Udemy - Modern NLP for AI Engineers and Data Scientists

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 2.7 GB
  • Uploaded By freecoursewb
  • Downloads 130
  • Last checked 4 days ago
  • Date uploaded 1 week ago
  • Seeders 11
  • Leechers 8

Infohash : F446B1B5C46A02DD1A27EFBCF6B362E81CB95284



Modern NLP for AI Engineers & Data Scientists

https://WebToolTip.com

Published 1/2026
Created by Data Science Academy, School of AI
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Beginner | Genre: eLearning | Language: English | Duration: 54 Lectures ( 4h 49m ) | Size: 2.8 GB

Learn classical NLP, embeddings, transformers, and evaluation techniques beyond large language models

What you'll learn
βœ“ Design robust NLP pipelines from raw text to model input
βœ“ Apply text preprocessing, tokenization, parsing, and normalization correctly in production settings
βœ“ Build and evaluate classical NLP systems using Bag-of-Words, TF-IDF, and statistical features
βœ“ Understand and implement word embeddings, sentence embeddings, and document embeddings
βœ“ Use transformers for understanding tasks, not just text generation
βœ“ Choose the right encoder-only, sequence, or attention-based model for a given problem
βœ“ Evaluate embeddings using intrinsic and extrinsic metrics, while accounting for bias and representation risks
βœ“ Think like an AI Engineer, not just a model user

Requirements
● Basic Python programming
● Fundamental understanding of machine learning concepts
● Curiosity to understand how AI systems actually work
● No prior NLP experience is requiredβ€”everything is built step by step

Files:

[ WebToolTip.com ] Udemy - Modern NLP for AI Engineers and Data Scientists
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - NLP Foundations Revisited Engineer View
    • 1. 1 1 What Makes NLP Different from Other ML Domains.mp4 (80.7 MB)
    • 2. 1 2 Text as Data.mp4 (73.8 MB)
    • 3. 1 3 NLP Problem Taxonomy.mp4 (68.9 MB)
    10 - NLP Pipelines System Design
    • 43. 10 1 End-to-End NLP Pipelines.mp4 (52.2 MB)
    • 44. 10 2 NLP in Microservices.mp4 (42.9 MB)
    • 45. 10 3 Evaluation Monitoring.mp4 (55.5 MB)
    • 46. System Design Architecture Exercises.html (13.4 KB)
    11 - Beyond LLMs Hybrid NLP Systems
    • 47. 11 1 When NOT to Use LLMs.mp4 (44.9 MB)
    • 48. 11 2 LLM Classical NLP.mp4 (53.2 MB)
    • 49. 11 3 Failure Modes in LLM-Centric NLP.mp4 (52.0 MB)
    • 50. Case-Study Design Decision Exercises.html (13.6 KB)
    12 - Ethics, Bias Responsible NLP
    • 51. 12 1 Bias in Text Data.mp4 (56.6 MB)
    • 52. 12 2 Fairness Explainability.mp4 (59.2 MB)
    • 53. 12 3 Privacy-Aware NLP.mp4 (63.7 MB)
    • 54. Scenario-Based Audit Policy Exercises.html (14.4 KB)
    2 - Text Preprocessing Linguistic Pipelines
    • 4. 2 1 Text Cleaning in Production.mp4 (54.0 MB)
    • 5. 2 2 Tokenization Strategies.mp4 (64.7 MB)
    • 6. 2 3 Stemming vs Lemmatization.mp4 (59.5 MB)
    • 7. 2 4 Sentence Segmentation Parsing Basics.mp4 (65.3 MB)
    • 8. Hands on Lab.html (14.5 KB)
    3 - SECTION 3 Feature Engineering for Classical NLP
    • 10. 3 2 TF-IDF Statistical Weighting.mp4 (82.0 MB)
    • 11. 3 3 Feature Selection for Text.mp4 (79.4 MB)
    • 12. 3 4 Classical NLP Models.mp4 (67.9 MB)
    • 13. Hands on Lab Model Evaluation.html (11.6 KB)
    • 9. 3 1 Bag-of-Words N-grams.mp4 (78.6 MB)
    4 - Word Representations Distributional Semantics
    • 14. 4 1 Distributional Hypothesis.mp4 (69.8 MB)
    • 15. 4 2 Static Word Embeddings.mp4 (52.0 MB)
    • 16. 4 3 Embedding Geometry.mp4 (70.3 MB)
    • 17. 4 4 Limitations of Static Embeddings.mp4 (69.4 MB)
    • 18. Hands on Lab Visualization Exercise.html (11.7 KB)
    5 - Sequence Modeling for NLP
    • 19. 5 1 Sequence Learning Fundamentals.mp4 (59.6 MB)
    • 20. 5 2 Recurrent Neural Networks.mp4 (62.9 MB)
    • 21. 5 3 LSTM GRU for NLP.mp4 (71.1 MB)
    • 22. 5 4 Bidirectional Models.mp4 (60.6 MB)
    • 23. Hands on Lab.html (11.2 KB)
    6 - Attention Transformer Fundamentals Pre-LLM
    • 24. 6 1 Attention Mechanism.mp4 (64.9 MB)
    • 25. 6 2 Transformer Architecture.mp4 (75.3 MB)
    • 26. 6 3 Why Transformers Replaced RNNs.mp4 (66.2 MB)
    • 27. 6 4 Transformer Use Without LLMs.mp4 (66.3 MB)
    • 28. Hands-On Lab Architecture Reasoning Exercise.html (14.2 KB)
    7 - Contextual Embeddings Representation Learning
    • 29. 7 1 Contextual Embeddings.mp4 (71.2 MB)
    • 30. 7 2 Encoder-Only Models.mp4 (52.5 MB)
    • 31. 7 3 Sentence Document Embeddings.mp4 (58.9 MB)
    • 32. 7 4 Embedding Evaluation.mp4 (74.6 MB)
    • 33. Applied Embedding Lab Evaluation Task.html (13.3 KB)
    8 - NLP Tasks in Practice
    • 34. 8 1 Text Classification.mp4 (59.6 MB)
    • 35. 8 2 Named Entity Recognition NER.mp4 (63.8 MB)
    • 36. 8 3 Text Similarity Semantic Search.mp4 (62.8 MB)
    • 37. 8 4 Topic Modeling.mp4 (68.0 MB)
    • 38. End-to-End Hands-On Mini Projects.html (12.6 KB)
    9 - Information Retrieval Search Systems
    • 39. 9 1 Classical IR.mp4 (64.7 MB)
    • 40. 9 2 Vector Search Semantic Retrieval.mp4 (49.4 MB)
    • 41. 9 3 Hybrid Search Systems.mp4 (54.8 MB)
    • 42. System-Level Hands-On Lab.html (13.8 KB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
R2-CACHE ☁️ R2 (hit) | CDN: MISS (0s) πŸ“„ torrent πŸ• 20 Feb 2026, 01:20:40 pm IST ⏰ 17 Mar 2026, 01:20:40 pm IST βœ… Valid for 24d 23h πŸ”„ Refresh Cache