Udemy - Machine Learning Using Python Programming

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 2.8 GB
  • Uploaded By freecoursewb
  • Downloads 56
  • Last checked 1 hour ago
  • Date uploaded 8 hours ago
  • Seeders 1
  • Leechers 40

Infohash : 4B04682E96753357E602C43C536589886A306233



Machine Learning Using Python Programming

https://WebToolTip.com

Last updated 4/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.76 GB | Duration: 8h 3m

Learn the core concepts of Machine Learning and its algorithms and how to implement them in Python 3

What you'll learn
Machine Learning Algorithms & Terminologies
Artificial Intelligence
Python Libraries - Numpy, Pandas, Scikit-learn, Matplotlib, Seaborn

Requirements
Yes, A Basic Knowledge in Python is preferred

Files:

[ WebToolTip.com ] Udemy - Machine Learning Using Python Programming
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction to Machine Learning
    • 1 - Introduction to Machine Learning English.vtt (6.7 KB)
    • 1 - Introduction to Machine Learning.mp4 (30.6 MB)
    • 2 - 2 Features of Machine Learning English.vtt (3.0 KB)
    • 2 - 2 Features of Machine Learning.mp4 (17.3 MB)
    • 3 - 3 Traditional Programming vs Machine Learning English.vtt (7.2 KB)
    • 3 - 3 Traditional Programming vs Machine Learning.mp4 (21.9 MB)
    10 - Support Vector Machines
    • 45 - 42 Understanding Support Vector Machines and Hyperplanes English.vtt (13.5 KB)
    • 45 - 42 Understanding Support Vector Machines and Hyperplanes.mp4 (52.6 MB)
    • 46 - 43 Understanding the Kernels of SVM English.vtt (3.0 KB)
    • 46 - 43 Understanding the Kernels of SVM.mp4 (13.7 MB)
    • 47 - 44 Implementing Support Vector Classifiers in Python English.vtt (8.2 KB)
    • 47 - 44 Implementing Support Vector Classifiers in Python.mp4 (52.3 MB)
    11 - K Nearest Neighbors for Classification and Regression
    • 48 - 45 Drawing the classification diagrams English.vtt (7.3 KB)
    • 48 - 45 Drawing the classification diagrams.mp4 (30.5 MB)
    • 49 - 46 Introduction to KNearest Neighbors English.vtt (3.8 KB)
    • 49 - 46 Introduction to KNearest Neighbors.mp4 (16.2 MB)
    • 50 - 47 Steps in KNN Classification and KNN Regression English.vtt (8.1 KB)
    • 50 - 47 Steps in KNN Classification and KNN Regression.mp4 (35.9 MB)
    • 51 - 48 Implementing KNN Classification using sklearn English.vtt (6.7 KB)
    • 51 - 48 Implementing KNN Classification using sklearn.mp4 (53.6 MB)
    • 52 - 49 Implementing KNN Regression Algorithm in Python I English.vtt (5.0 KB)
    • 52 - 49 Implementing KNN Regression Algorithm in Python I.mp4 (32.5 MB)
    • 53 - 50 Implementing KNN Regression Algorithm in Python II English.vtt (2.0 KB)
    • 53 - 50 Implementing KNN Regression Algorithm in Python II.mp4 (18.3 MB)
    12 - Decision Tree Classifier Algorithm
    • 54 - 51 Introduction to Decision Trees English.vtt (0.9 KB)
    • 54 - 51 Introduction to Decision Trees.mp4 (1.9 MB)
    • 55 - 52 Basic Tree Terminologies English.vtt (18.8 KB)
    • 55 - 52 Basic Tree Terminologies.mp4 (90.0 MB)
    • 56 - 53 Example 1 for Decision Tree English.vtt (3.4 KB)
    • 56 - 53 Example 1 for Decision Tree.mp4 (14.3 MB)
    • 57 - 531 Example 2 for Decision Tree English.vtt (2.6 KB)
    • 57 - 531 Example 2 for Decision Tree.mp4 (8.8 MB)
    • 58 - 54 Implementation of Decision Tree Algorithm I English.vtt (3.5 KB)
    • 58 - 54 Implementation of Decision Tree Algorithm I.mp4 (25.5 MB)
    • 59 - 55 Implementation of Decision Tree Algorithm II English.vtt (2.7 KB)
    • 59 - 55 Implementation of Decision Tree Algorithm II.mp4 (22.5 MB)
    13 - Random Forest Classifier Algorithm
    • 60 - 56 Ensemble Techniques Random Forest Classifier English.vtt (8.9 KB)
    • 60 - 56 Ensemble Techniques Random Forest Classifier.mp4 (41.4 MB)
    • 61 - 57 Implementing Random Classifier in Python English.vtt (7.2 KB)
    • 61 - 57 Implementing Random Classifier in Python.mp4 (54.3 MB)
    14 - Naive Bayes Algorithm
    • 62 - 59 Naive Bayes Classifier English.vtt (13.6 KB)
    • 62 - 59 Naive Bayes Classifier.mp4 (61.4 MB)
    • 63 - 60 Implementing Naive Bayes Classifier for wine dataset English.vtt (16.9 KB)
    • 63 - 60 Implementing Naive Bayes Classifier for wine dataset.mp4 (141.7 MB)
    15 - Resources
    • 64 - Download all the notebooks and datasets here.html (0.1 KB)
    • Notebooks
      • Decision Tree.ipynb (35.6 KB)
      • KNN Regression.ipynb (35.8 KB)
      • KNN.ipynb (4.5 KB)
      • LinearRegression.ipynb (38.1 KB)
      • LogisticRegression.ipynb (14.9 KB)
      • MyFirstNotebook.ipynb (16.9 KB)
      • Naive Bayes' Algorithm.ipynb (9.0 KB)
      • Naive Bayes' Classifier.ipynb (26.3 KB)
      • Preprocessing Techniques.ipynb (2.5 KB)
      • Product.csv (10.7 KB)
      • Random Forest Classifier.ipynb (9.0 KB)
      • SVM.ipynb (8.3 KB)
      • Salary_Data.csv (0.4 KB)
      • car.csv (10.3 KB)
      16 - KMeans Clustering
      • 65 - The complete flow of KMeans Clustering English.vtt (19.3 KB)
      • 65 - The complete flow of KMeans Clustering.mp4 (89.0 MB)
      • 66 - The concept of Overfitting and Underfitting English.vtt (18.1 KB)
      • 66 - The concept of Overfitting and Underfitting.mp4 (78.9 MB)
      2 - Types of Machine Learning
      • 4 - 4 Difference between Supervised and Unsupervised Learning English.vtt (9.1 KB)
      • 4 - 4 Difference between Supervised and Unsupervised Learning.mp4 (39.2 MB)
      • 5 - 5 Algorithms in Supervised and Unsupervised Learning English.vtt (3.8 KB)
      • 5 - 5 Algorithms in Supervised and Unsupervised Learning.mp4 (12.9 MB)
      3 - The Machine Learning Pipeline
      • 10 - 10 Introduction to iPython Environment English.vtt (10.4 KB)
      • 10 - 10 Introduction to iPython Environment.mp4 (51.6 MB)
      • 11 - Important Libraries in Python.html (0.3 KB)
      • 6 - 6 The Machine Learning Pipeline Data Collection English.vtt (9.4 KB)
      • 6 - 6 The Machine Learning Pipeline Data Collection.mp4 (43.8 MB)
      • 7 - 7 Importance of Data Prepocessing English.vtt (3.4 KB)
      • 7 - 7 Importance of Data Prepocessing.mp4 (17.9 MB)
      • 8 - 8 Importance of Feature Selection and Feature Engineering English.vtt (10.8 KB)
      • 8 - 8 Importance of Feature Selection and Feature Engineering.mp4 (52.5 MB)
      • 9 - 9 The Machine Learning Terminologies English.vtt (7.5 KB)
      • 9 - 9 The Machine Learning Terminologies.mp4 (36.5 MB)
      4 - Numpy Library
      • 12 - 11Creating a numpy array English.vtt (17.0 KB)
      • 12 - 11Creating a numpy array.mp4 (49.6 MB)
      • 13 - 12 Processing the numpy arrays English.vtt (16.5 KB)
      • 13 - 12 Processing the numpy arrays.mp4 (58.2 MB)
      • 14 - 13 Accessing Columns from Numpy Matrices English.vtt (5.0 KB)
      • 14 - 13 Accessing Columns from Numpy Matrices.mp4 (18.6 MB)
      • 15 - 14 Statistical methods in Numpy English.vtt (14.7 KB)
      • 15 - 14 Statistical methods in Numpy.mp4 (56.2 MB)
      • 16 - 15 Matrix Operations in Numpy English.vtt (13.6 KB)
      • 16 - 15 Matrix Operations in Numpy.mp4 (53.5 MB)
      • 17 - 16 Iterating through the numpy array English.vtt (5.9 KB)
      • 17 - 16 Iterating through the numpy array.mp4 (24.5 MB)
      5 - Pandas Library
      • 18 - 17 An Intuition on Pandas Dataframe and Series English.vtt (6.5 KB)
      • 18 - 17 An Intuition on Pandas Dataframe and Series.mp4 (28.1 MB)
      • 19 - 18 Using numpy arrays to create Pandas Series English.vtt (8.1 KB)
      • 19 - 18 Using numpy arrays to create Pandas Series.mp4 (28.8 MB)
      • 20 - 19 Using dictionary to create Pandas Series English.vtt (7.2 KB)
      • 20 - 19 Using dictionary to create Pandas Series.mp4 (26.4 MB)
      • 21 - 20 Using a scalar to create Pandas Series English.vtt (2.1 KB)
      • 21 - 20 Using a scalar to create Pandas Series.mp4 (10.5 MB)
      • 22 - 21 Series Processing English.vtt (1.5 KB)
      • 22 - 21 Series Processing.mp4 (8.5 MB)
      • 23 - 22 Creating Pandas Dataframe from series English.vtt (7.1 KB)
      • 23 - 22 Creating Pandas Dataframe from series.mp4 (24.5 MB)
      • 24 - 23 Using lists of data to create a Pandas Dataframe English.vtt (5.0 KB)
      • 24 - 23 Using lists of data to create a Pandas Dataframe.mp4 (21.0 MB)
      • 25 - 24 Another approach to create Dataframes English.vtt (4.2 KB)
      • 25 - 24 Another approach to create Dataframes.mp4 (21.6 MB)
      • 26 - 25 Directly creating a pandas dataframe from numpy arrays English.vtt (1.8 KB)
      • 26 - 25 Directly creating a pandas dataframe from numpy arrays.mp4 (8.2 MB)
      6 - Analysis of Datasets using Pandas and Matplotlib Library
      • 27 - 26 Loading the dataset Important English.vtt (6.7 KB)
      • 27 - 26 Loading the dataset Important.mp4 (32.3 MB)
      • 28 - 27 Analysis of Datasets I English.vtt (7.3 KB)
      • 28 - 27 Analysis of Datasets I.mp4 (42.0 MB)
      • 29 - 28 Analysis of Datasets by Plotting II English.vtt (17.1 KB)
      • 29 - 28 Analysis of Datasets by Plotting II.mp4 (71.1 MB)
      7 - The Scikitlearn Library and Preprocessing Techniques
      • 30 - 29 Working with Iris Dataset from sklearn English.vtt (32.1 KB)
      • 30 - 29 Working with Iris Dataset from sklearn.mp4 (194.1 MB)
      • 31 - 30 Binarization English.vtt (9.6 KB)
      • 31 - 30 Binarization.mp4 (43.2 MB)
      • 32 - 31 Feature Scaling English.vtt (9.4 KB)
      • 32 - 31 Feature Scaling.mp4 (46.9 MB)
      8 - Supervised Learning Linear Regression
      • 33 - 32 Analysis of Linear Regression English.vtt (21.3 KB)
      • 33 - 32 Analysis of Linear Regression.mp4 (73.8 MB)
      • 34 - Use of Gradient Descent Optimizer English.vtt (10.7 KB)
      • 34 - Use of Gradient Descent Optimizer.mp4 (33.0 MB)
      • 35 - The Gradient Descent Optimizer Algorithm English.vtt (27.6 KB)
      • 35 - The Gradient Descent Optimizer Algorithm.mp4 (81.1 MB)
      • 36 - 33 Demand vs Price Problem to understand Linear Regression English.vtt (11.6 KB)
      • 36 - 33 Demand vs Price Problem to understand Linear Regression.mp4 (71.3 MB)
      • 37 - 34 Implementation of Linear Regression I English.vtt (12.7 KB)
      • 37 - 34 Implementation of Linear Regression I.mp4 (75.8 MB)
      • 38 - 35 Implementation of Linear Regression II English.vtt (6.9 KB)
      • 38 - 35 Implementation of Linear Regression II.mp4 (48.2 MB)
      • 39 - 36 Visualizing the LBF using matplotlib English.vtt (4.8 KB)
      • 39 - 36 Visualizing the LBF using matplotlib.mp4 (23.3 MB)
      9 - Logistic Regression for Classification Problems
      • 40 - 37 Why does Linear Regression fail for a classification problem English.vtt (11.2 KB)
      • 40 - 37 Why does Linear Regression fail for a classification problem.mp4 (39.1 MB)
      • 41 - 38 The Sigmoid function in Logistic Regression English.vtt (6.3 KB)
      • 41 - 38 The Sigmoid function in Logistic Regression.mp4 (24.0 MB)
      • 42 - 39 The Confusion Matrix English.vtt (14.2 KB)
      • 42 - 39 The Confusion Matrix.mp4 (60.1 MB)
      • 43 - 40 Implementation of Logistic Regression I English.vtt (20.2 KB)
      • 43 - 40 Implementation of Logistic Regression I.mp4 (150.3 MB)
      • 44 - 41 Creating an heatmap of the confusion matrix English.vtt (4.1 KB)
      • 44 - 41 Creating an heatmap of the confusion matrix.mp4 (22.1 MB)
      • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
R2-CACHE ☁️ R2 (hit) | CDN: MISS (0s) 📄 torrent 🕐 12 Feb 2026, 09:17:14 pm IST ⏰ 09 Mar 2026, 09:17:14 pm IST ✅ Valid for 20d 1h 🔄 Refresh Cache