Udemy - Course Cloudera Data Engineer Certification CDP-DE 2026 a...
- Category Other
- Type Tutorials
- Language English
- Total size 1.7 GB
- Uploaded By freecoursewb
- Downloads 11
- Last checked 1 hour ago
- Date uploaded 4 hours ago
- Seeders 2
- Leechers 5
Infohash : BE9A6BF1262B4FAA06FB93D880C7097E4C0A4FC6
Course Cloudera Data Engineer Certification CDP-DE 2026&Book
https://WebToolTip.com
Published 1/2026
Created by HadoopExam Learning Resources
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 41 Lectures ( 5h 4m ) | Size: 1.66 GB
Exam style Q&A covering Spark on Kubernetes, Apache Airflow, Iceberg, Performance Tuning, Pipelines & Product + eBook
What you'll learn
✓ Design reliable data models on Cloudera Data Platform (CDP) using Apache Iceberg with ACID, time-travel, and schema evolution.
✓ Build and optimize Apache Spark pipelines (DataFrame/Spark SQL) on Kubernetes, with correct executor sizing and shuffle strategy.
✓ Implement incremental ETL/CDC patterns and idempotent upserts using Spark MERGE, checkpoints, and watermarking.
✓ Tune Spark jobs for performance: fix skewed joins, enable AQE, prune partitions/columns, and reduce small files via compaction.
✓ Choose effective partitioning, bucketing, and file-size targets for large fact tables to balance cost and speed.
✓ Orchestrate pipelines with Apache Airflow: production-grade DAG design, retries/SLAs, alerts, and pre/post-load data quality checks.
✓ Secure and operate pipelines on CDP with least-privilege access, secrets management, monitoring dashboards, and auditability.
✓ Deploy and promote jobs via the CDP Data Engineering Service (DES) CLI/API, including blue/green and canary releases.
✓ Diagnose failures quickly from Spark UI and Airflow logs; run safe rollbacks and targeted backfills.
✓ Apply real exam patterns for the CDP Data Engineer certification: topic weightings, common traps, and time-saving strategies.
✓ Map business queries to efficient table formats (Parquet vs Iceberg) and choose the right catalog/integration approach.
✓ Measure success with concrete KPIs: wall-clock time, shuffle MB, task p95, data freshness, and DQ pass rates.
Requirements
● No strict prerequisites — this course is interview-style and exam-focused. You can join as a motivated beginner.
● Basic knowledge of SQL (SELECT, JOIN, GROUP BY) and data warehousing terms. (optional)
● Familiarity with Apache Spark concepts (DataFrames, transformations vs. actions). (optional)
● High-level understanding of Apache Airflow (DAGs, retries, alerts) and CI/CD ideas. (optional)
● Comfort reading technical artifacts like Spark UI screenshots or Airflow logs. (optional)
Files:
[ WebToolTip.com ] Udemy - Course Cloudera Data Engineer Certification CDP-DE 2026 and Book- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 1 - Spark (48%)
- 1. Module 1 Fundamentals of Spark on Kubernetes with Cloudera Data Engineering.mp4 (42.7 MB)
- 1. Module 1 Fundamentals of Spark on Kubernetes with Cloudera Data Engineering.pdf (203.5 KB)
- 10. Module 10 Mastering Complex Data Types in Apache Spark.mp4 (36.0 MB)
- 10. Module 10 Mastering Complex Data Types in Apache Spark.pdf (144.2 KB)
- 2. Module 2 Mastering Apache Spark DataFrames The Core of Data Engineering.mp4 (38.6 MB)
- 2. Module 2 Mastering Apache Spark DataFrames The Core of Data Engineering.pdf (172.5 KB)
- 3. Module 3 Mastering Spark Understanding Distributed Processing.mp4 (47.0 MB)
- 3. Module 3 Mastering Spark Understanding Distributed Processing.pdf (165.0 KB)
- 4. Module 4 Spark and Hive Integration Implementing the Hive Warehouse Connector.mp4 (37.8 MB)
- 4. Module 4 Spark and Hive Integration Implementing the Hive Warehouse Connector.pdf (146.7 KB)
- 5. Module 5 Mastering Spark Distributed Persistence.mp4 (48.6 MB)
- 5. Module 5 Mastering Spark Distributed Persistence.pdf (187.4 KB)
- 6. Module 6 Mastering Spark Structured Streaming for Real time Data.mp4 (47.0 MB)
- 6. Module 6 Mastering Spark Structured Streaming for Real time Data.pdf (158.5 KB)
- 7. Module 7 Implementing Error Handling and Dead Letter Queues in Spark.mp4 (45.3 MB)
- 7. Module 7 Implementing Error Handling and Dead Letter Queues in Spark.pdf (200.9 KB)
- 8. Module 8 Optimising Spark Broadcast Variables and Accumulators.mp4 (40.9 MB)
- 8. Module 8 Optimising Spark Broadcast Variables and Accumulators.pdf (177.9 KB)
- 9. Module 9 Mastering Spark Dynamic Resource Allocation.mp4 (37.3 MB)
- 9. Module 9 Mastering Spark Dynamic Resource Allocation.pdf (209.3 KB)
- 11. Module 11 Implementing Incremental Extraction in Apache Airflow on Cloudera Data Engineering.pdf (160.6 KB)
- 11. Module 11 Implementing Incremental Extraction in Apache Airflow on Cloudera Data.mp4 (34.0 MB)
- 12. Module 12 Orchestrating ETL Pipelines with Apache Airflow in Cloudera Data Engin.mp4 (45.1 MB)
- 12. Module 12 Orchestrating ETL Pipelines with Apache Airflow in Cloudera Data Engineering.pdf (173.0 KB)
- 13. Module 13 Automating Data Quality Checks with Apache Airflow in Cloudera Data En.mp4 (42.4 MB)
- 13. Module 13 Automating Data Quality Checks with Apache Airflow in Cloudera Data Engineering.pdf (154.0 KB)
- 14. Module 14 Orchestrating Workflows in Cloudera Data Engineering with Apache Airfl.mp4 (36.9 MB)
- 14. Module 14 Orchestrating Workflows in Cloudera Data Engineering with Apache Airflow.pdf (175.8 KB)
- 15. Module 15 Configuring Airflow Pipelines and Data Passing in Cloudera Data Engine.mp4 (38.2 MB)
- 15. Module 15 Configuring Airflow Pipelines and Data Passing in Cloudera Data Engineering.pdf (157.8 KB)
- 16. Module 16 Implementing Airflow Operators and Hooks in Cloudera Data Engineering.mp4 (40.9 MB)
- 16. Module 16 Implementing Airflow Operators and Hooks in Cloudera Data Engineering.pdf (167.6 KB)
- 17. Module 17 Managing Connections and Secrets in CDE Airflow.mp4 (32.1 MB)
- 17. Module 17 Managing Connections and Secrets in CDE Airflow.pdf (163.2 KB)
- 18. Module 18 Utilizing Dynamic DAG Generation in Cloudera Data Engineering.mp4 (40.8 MB)
- 18. Module 18 Utilizing Dynamic DAG Generation in Cloudera Data Engineering.pdf (160.6 KB)
- 19. Module 19 Optimizing Airflow in CDE SLAs Alerts and Callbacks.mp4 (33.6 MB)
- 19. Module 19 Optimizing Airflow in CDE SLAs Alerts and Callbacks.pdf (170.6 KB)
- 20. Module 20 Basic Tools for Spark Performance Tuning in Cloudera Data Engineering.mp4 (35.4 MB)
- 20. Module 20 Basic Tools for Spark Performance Tuning in Cloudera Data Engineering.pdf (176.4 KB)
- 21. Module 21 Performance Tuning Optimization Frameworks and Explain Plans.mp4 (36.0 MB)
- 21. Module 21 Performance Tuning Optimization Frameworks and Explain Plans.pdf (171.5 KB)
- 22. Module 22 Performance Tuning Understanding and Managing Schema Inference.mp4 (38.0 MB)
- 22. Module 22 Performance Tuning Understanding and Managing Schema Inference.pdf (178.4 KB)
- 23. Module 23 Performance Tuning Improving Join Performance in Cloudera Data Platfor.mp4 (44.7 MB)
- 23. Module 23 Performance Tuning Improving Join Performance in Cloudera Data Platform.pdf (194.6 KB)
- 24. Module 24 Performance Tuning Leveraging Data Caching for Reuse.mp4 (35.9 MB)
- 24. Module 24 Performance Tuning Leveraging Data Caching for Reuse.pdf (179.6 KB)
- 25. Module 25 Performance Tuning Partitioned and Bucketed Tables.mp4 (40.0 MB)
- 25. Module 25 Performance Tuning Partitioned and Bucketed Tables.pdf (179.4 KB)
- 26. Module 26 Performance Tuning Mitigating Data Skew with Salting in CDE.mp4 (32.5 MB)
- 26. Module 26 Performance Tuning Mitigating Data Skew with Salting in CDE.pdf (156.6 KB)
- 27. Module 27 Spark Performance Tuning Shuffle Partitions and Memory.mp4 (35.3 MB)
- 27. Module 27 Spark Performance Tuning Shuffle Partitions and Memory.pdf (189.7 KB)
- 28. Module 28 Optimizing File I O Parquet Avro and Storage Strategies.mp4 (42.8 MB)
- 28. Module 28 Optimizing File I O Parquet Avro and Storage Strategies.pdf (166.1 KB)
- 29. Module 29 Identifying Spark Bottlenecks via Spark UI and Event Logs in CDE.mp4 (35.7 MB)
- 29. Module 29 Identifying Spark Bottlenecks via Spark UI and Event Logs in CDE.pdf (191.3 KB)
- 30. Module 30 Performance Tuning Predicate Pushdown & Column Projection.mp4 (38.3 MB)
- 30. Module 30 Performance Tuning Predicate Pushdown Column Projection.pdf (177.1 KB)
- 31. Module 31 Performance Tuning Managing Small Files and Compaction in CDP.mp4 (39.3 MB)
- 31. Module 31 Performance Tuning Managing Small Files and Compaction in CDP.pdf (187.3 KB)
- 32. Module 32 Programmatic Deployment in CDP Mastering API and CLI.mp4 (43.8 MB)
- 32. Module 32 Programmatic Deployment in CDP Mastering API and CLI.pdf (201.0 KB)
- 33. Module 33 Deployment Workflows in Cloudera Data Engineering.mp4 (34.8 MB)
- 33. Module 33 Deployment Workflows in Cloudera Data Engineering.pdf (167.4 KB)
- 34. Module 34 Implementing CI CD Pipelines for Data Artifacts in CDP.mp4 (42.6 MB)
- 34. Module 34 Implementing CI CD Pipelines for Data Artifacts in CDP.pdf (191.6 KB)
- 35. Module 35 Managing Secret Storage and Environment Configurations in CDP.mp4 (39.1 MB)
- 35. Module 35 Managing Secret Storage and Environment Configurations in CDP.pdf (168.9 KB)
- 36. Module 36 Monitoring Workloads in CDP with Prometheus and Grafana.mp4 (46.3 MB)
- 36. Module 36 Monitoring Workloads in CDP with Prometheus and Grafana.pdf (192.5 KB)
- 37. Module 37 Mastering Apache Iceberg in Cloudera Data Platform.mp4 (45.6 MB)
- 37. Module 37 Mastering Apache Iceberg in Cloudera Data Platform.pdf (179.0 KB)
- 38. Module 38 Mastering Iceberg Schema and Partition Evolution.mp4 (39.4 MB)
- 38. Module 38 Mastering Iceberg Schema and Partition Evolution.pdf (188.6 KB)
- 39. Module 39 Implementing Time Travel and Snapshot Maintenance in Iceberg.mp4 (35.5 MB)
- 39. Module 39 Implementing Time Travel and Snapshot Maintenance in Iceberg.pdf (161.5 KB)
- 40. Module 40 Optimizing Iceberg Tables with Hidden Partitioning.mp4 (38.3 MB)
- 40. Module 40 Optimizing Iceberg Tables with Hidden Partitioning.pdf (196.0 KB)
- 1. Practice Paper 1.html (165.3 KB)
- 2. Practice Paper 2.html (169.8 KB)
- 41. Download eBook from Resource Section of this Module.mp4 (42.7 MB)
- 41. udemy book.pdf (64.6 MB)
- Bonus Resources.txt (0.1 KB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce