Udemy - Applied Statistics and Probability for Data Science - Pyt...

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 1.5 GB
  • Uploaded By freecoursewb
  • Downloads 216
  • Last checked 2 hours ago
  • Date uploaded 3 days ago
  • Seeders 22
  • Leechers 13

Infohash : 327B3AFDAE816FC571D86F861BF4B5258CF93F35



Applied Statistics & Probability for Data Science: Python

https://WebToolTip.com

Published 12/2025
Created by Rahul kaundal
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Beginner | Genre: eLearning | Language: English | Duration: 44 Lectures ( 2h 8m ) | Size: 1.48 GB

Solve Real Problems with Data: An In-Depth Guide to Statistics, Probability, Hypothesis testing using Python & Excel

What you'll learn
Master Foundational Probability & Statistics
Perform Robust Data Analysis with Python
Communicate Data-Driven Insights
Learners will gain hands-on skills for manipulating data and preparing it for deeper analysis
Learn Descriptive Statistics, Probability and Distributions indepth with industry use cases

Requirements
No programming experience required

Files:

[ WebToolTip.com ] Udemy - Applied Statistics and Probability for Data Science - Python
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Foundations of Statistics
    • 1. Introduction.mp4 (65.0 MB)
    • 1. Introduction_Resource_1 1 Introduction to Statistics Understanding Data and Datasets xlsx.xlsx (13.2 KB)
    • 2. Exploring Variables Using Examples.mp4 (45.7 MB)
    • 2. Exploring Variables Using Examples_Resource_1 2 Exploring Variables Using Telecom Industry Examples xlsx.xlsx (14.0 KB)
    • 3. Quantitative Variables Concepts and Applications.mp4 (49.7 MB)
    • 3. Quantitative Variables Concepts and Applications_Resource_1 3 Quantitative Variables Concepts and Applications xlsx.xlsx (16.3 KB)
    10 - Bayes' Theorem and Predictive Analytics
    • 35. Bayes' Theorem Overview.mp4 (17.3 MB)
    • 36. Predicting Customer Churn.mp4 (50.8 MB)
    • 36. Predicting Customer Churn_Resource_10 2 Predicting Customer Churn xlsx.xlsx (36.9 KB)
    • 37. Implementing Bayes’ Theorem in Python.mp4 (23.4 MB)
    • 38. Use cases Bayes Theorem.mp4 (20.7 MB)
    11 - Inferential Statistics and Hypothesis Testing
    • 39. Inferential Statistics Overview.mp4 (35.4 MB)
    • 40. Forecasting Data Usage with Inferential Methods.mp4 (17.7 MB)
    • 41. Introduction to Hypothesis Testing.mp4 (84.0 MB)
    • 42. Understanding t Tests and Their Variants.mp4 (42.2 MB)
    • 43. Step by Step Performing a Two Sample t Test.mp4 (15.4 MB)
    • 44. Use Case Predicting 5G Data Speeds Using t Tests.mp4 (47.2 MB)
    2 - Python Basics for Analytics
    • 4. Python Basics for Data Analysis (Handson).mp4 (54.1 MB)
    • 4. Python Basics for Data Analysis (Handson)_Resource_2 1 Python Basics for Data Analysis Handson ipynb.bin (2.7 KB)
    • 5. Loop function in Python.mp4 (32.8 MB)
    • 5. Loop function in Python_Resource_2 2 Loop function in Python ipynb.bin (1.2 KB)
    • 6. Using Conditional Statements.mp4 (36.9 MB)
    • 6. Using Conditional Statements_Resource_2 3 Using Conditional Statements to Detect Network Congestion ipynb.bin (1.1 KB)
    • 7. Data Visualization.mp4 (50.5 MB)
    • 7. Data Visualization_Resource_2 4 Data Visualization Analyzing Network Performance ipynb.bin (34.4 KB)
    3 - Descriptive Statistics Measures of Central Tendency
    • 10. Statistical Calculations in Excel and Python.mp4 (25.6 MB)
    • 11. Real World Use Cases Central Tendency.mp4 (19.3 MB)
    • 8. Understanding Central Tendency.mp4 (39.1 MB)
    • 8. Understanding Central Tendency_Resource_3 1 Measures of Central Tendency Python ipynb.bin (2.0 KB)
    • 9. Example Analyzing Call Duration Data.mp4 (26.0 MB)
    • 9. Example Analyzing Call Duration Data_Resource_3 2 Measures of Central Tendency xlsx.xlsx (12.2 KB)
    4 - Descriptive Statistics Understanding Data Dispersion
    • 12. Dispersion Metrics Range Variance and Standard Deviation.mp4 (19.8 MB)
    • 12. Dispersion Metrics Range Variance and Standard Deviation_Resource_4 1 Data Dispersion Python ipynb.bin (2.7 KB)
    • 13. Example Call Duration Data for Dispersion Analysis.mp4 (41.1 MB)
    • 13. Example Call Duration Data for Dispersion Analysis_Resource_4 2 Understanding Data Dispersion xlsx.xlsx (12.6 KB)
    • 14. Excel and Python for Dispersion Calculations.mp4 (30.9 MB)
    • 15. Applications of Dispersion Metrics.mp4 (26.3 MB)
    5 - Descriptive Statistics Visualizing Data
    • 16. Data Visualization Techniques.mp4 (22.0 MB)
    • 16. Data Visualization Techniques_Resource_5 1 Visualizing Telecom Data Excel xlsx.xlsx (25.5 KB)
    • 17. Practical Visualizing Call Duration Datasets.mp4 (29.5 MB)
    • 17. Practical Visualizing Call Duration Datasets_Resource_5 2 Visualizing Telecom Data Python ipynb.bin (52.9 KB)
    • 18. Creating Visuals in Excel.mp4 (19.3 MB)
    • 19. Creating Visuals in Python.mp4 (20.8 MB)
    6 - Introduction to Probability
    • 20. Probability Concepts.mp4 (29.4 MB)
    • 21. Permutations and Combinations Simplified.mp4 (30.7 MB)
    • 22. Telecom Case Study Spectrum Band combinations.mp4 (27.9 MB)
    • 23. Probability Distribution& its types.mp4 (35.4 MB)
    7 - Normal Distribution
    • 24. Normal Distribution & its properties.mp4 (48.0 MB)
    • 25. Case Study Analyzing Daily Call Durations.mp4 (26.8 MB)
    • 25. Case Study Analyzing Daily Call Durations_Resource_7 2 Analyzing Daily Call Durations ipynb.bin (28.5 KB)
    • 26. Z Scores Predicting User Call Behavior.mp4 (21.6 MB)
    8 - Binomial Distribution in Action
    • 27. Binomial Distribution & its properties.mp4 (32.8 MB)
    • 27. Binomial Distribution & its properties_Resource_8 1 Binomial Distribution Excel xlsx.xlsx (28.5 KB)
    • 28. Predicting Call Quality Using Binomial Models.mp4 (18.4 MB)
    • 28. Predicting Call Quality Using Binomial Models_Resource_8 2 Binomial Distribution Python ipynb.bin (17.0 KB)
    • 29. Excel and Python Implementation.mp4 (99.9 MB)
    • 30. Applications of Binomial Distribution.mp4 (21.0 MB)
    9 - Poisson Distribution
    • 31. Poisson Distribution & its properties.mp4 (32.7 MB)
    • 31. Poisson Distribution & its properties_Resource_9 1 Poisson Distribution Excel xlsx.xlsx (15.9 KB)
    • 32. Modelling Dropped calls with Poisson Distribution.mp4 (13.1 MB)
    • 32. Modelling Dropped calls with Poisson Distribution_Resource_9 2 Poisson Distribution Python ipynb.bin (26.1 KB)
    • 33. Practical Poisson Calculations in Excel and Python.mp4 (52.9 MB)
    • 34. Use Cases Poisson Distribution.mp4 (24.0 MB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
GDRIVE-CACHE πŸ“ GD (hit) | ID: 16eEOwICpe... πŸ“„ torrent πŸ• 13 Jan 2026, 01:06:50 am IST ⏰ 07 Feb 2026, 01:06:48 am IST βœ… Valid for 20d 22h πŸ”„ Refresh Cache