Level Up LLM App Development with LangChain and OpenAI

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 2.0 GB
  • Uploaded By freecoursewb
  • Downloads 172
  • Last checked 3 weeks ago
  • Date uploaded 3 weeks ago
  • Seeders 5
  • Leechers 21

Infohash : 62AE6C545DFF7884EE3AAE64F81FDF731117680A



Level Up LLM App Development with LangChain & OpenAI

https://WebToolTip.com

Published 11/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 3h 51m | Size: 1.95 GB

Build LLM apps with LangChain, OpenAI, RAG, agents, vector search, and deploy full AI applications to the cloud.

What you'll learn
Build LLM-powered applications using LangChain and OpenAI APIs.
Implement Retrieval-Augmented Generation (RAG) to enhance model outputs.
Create intelligent agents with tools, functions, and multi-retriever workflows.
Deploy LLM apps to the cloud using LangServe, Streamlit, and Replit.

Requirements
Basic Python knowledge is helpful but not required. Beginners can follow along easily.

Files:

[ WebToolTip.com ] Level Up LLM App Development with LangChain and OpenAI
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction
    • 1 - What you should know - github.txt (0.1 KB)
    • 1 - What you should know.mp4 (15.2 MB)
    10 - Deploy Chains as a RESTful API with LangServe
    • 1 - Introducing LangServe Installation and setup.mp4 (31.4 MB)
    • 2 - Create a server.mp4 (6.5 MB)
    • 3 - Create the routes and the endpoints.mp4 (50.8 MB)
    • 4 - Create a runnable to combine a prompt, a model, and output.mp4 (37.4 MB)
    • 5 - Challenge Deploy a RESTful API.mp4 (17.2 MB)
    • 6 - Solution Deploy a RESTful API.mp4 (29.1 MB)
    11 - Finish Line Deploy to the Cloud and Share with the World
    • 1 - Manage and deploy an app on Render.mp4 (15.3 MB)
    • 2 - Create a GitHub repository and push your project.mp4 (40.0 MB)
    • 3 - Deploy a new web service on Render.mp4 (38.6 MB)
    2 - LangChain Basics Intro to Building LLM-Powered Apps
    • 1 - Setup and installation.mp4 (33.6 MB)
    • 2 - Create a chain and interface with an LLM.mp4 (36.5 MB)
    • 3 - Define and structure a prompt.mp4 (41.3 MB)
    • 4 - Create and invoke a chain (LCEL syntax).mp4 (22.5 MB)
    • 5 - Work with output parsers.mp4 (18.2 MB)
    3 - Adding Similarity Search and Context
    • 1 - Quickstart Installation and setup.mp4 (24.5 MB)
    • 2 - Create embeddings from text.mp4 (10.9 MB)
    • 3 - Querying the vector store.mp4 (11.2 MB)
    • 4 - Querying as a retriever.mp4 (33.4 MB)
    4 - Leveraging LLMs with LangChain and RAG
    • 1 - RAG Overview and architecture.mp4 (22.0 MB)
    • 10 - Solution Add a chain with chat history.mp4 (43.1 MB)
    • 11 - Solution Context- and history-aware chatbot.mp4 (53.2 MB)
    • 2 - Breaking down the RAG pipeline.mp4 (12.2 MB)
    • 3 - Project setup.mp4 (31.4 MB)
    • 4 - Load and split documents into chunks.mp4 (45.1 MB)
    • 5 - Initialize a vector store (Chroma) and ingest documents.mp4 (49.3 MB)
    • 6 - Create the chain Prompt + model + parser.mp4 (41.8 MB)
    • 7 - Create the chain Add context with a retriever.mp4 (39.6 MB)
    • 8 - Pass data with RunnablePassthrough and query data.mp4 (32.1 MB)
    • 9 - Challenge Create a custom agent with history.mp4 (39.2 MB)
    5 - Create an Interactive Web App (Streamlit)
    • 1 - Set up the Streamlit application.mp4 (39.0 MB)
    • 2 - Build the layout with Streamlit components.mp4 (39.5 MB)
    • 3 - Adding functionality with Streamlit.mp4 (29.9 MB)
    • 4 - Challenge Deploy your Streamlit app.mp4 (31.4 MB)
    • 5 - Solution Add app to GitHub.mp4 (36.7 MB)
    • 6 - Solution Deploy your app.mp4 (47.5 MB)
    6 - Build a Q&A Agent with Multiple Data Sources and Query Analysis
    • 1 - Retrieval with query analysis.mp4 (8.2 MB)
    • 2 - Connect to a data source and create an index.mp4 (35.8 MB)
    • 3 - Set up query analysis to handle multiple data sources.mp4 (51.1 MB)
    • 4 - Retrieval with query analysis.mp4 (39.6 MB)
    • 5 - Challenge Retrieval with multiple data sources.mp4 (35.4 MB)
    • 6 - Solution Q&A with multiple data sources.mp4 (70.0 MB)
    7 - Perform Semantic Search Using MongoDB Atlas Vector Search and OpenAI
    • 1 - Getting started with MongoDB Create an account.mp4 (14.7 MB)
    • 2 - Build and deploy a free cluster.mp4 (13.7 MB)
    • 3 - Set up the MongoDB environment and connect to the cluster.mp4 (56.4 MB)
    • 4 - Create a secured database access.mp4 (29.2 MB)
    • 5 - Load sample data and create the vector store.mp4 (44.5 MB)
    • 6 - Create the Atlas Vector Search index.mp4 (37.0 MB)
    • 7 - Run vector search queries.mp4 (59.3 MB)
    8 - Interact with a NoSQL Database (MongoDB)
    • 1 - Create a retrieval chain Define the prompt.mp4 (26.3 MB)
    • 2 - Create a retrieval chain Define the context.mp4 (53.5 MB)
    • 3 - Create a retrieval chain Parse and format results.mp4 (18.2 MB)
    • 4 - Query documents and generate extended responses.mp4 (34.0 MB)
    9 - LLM Fine-Tuning with the OpenAI Tools and Functions
    • 1 - Using agents to perform actions in chains.mp4 (15.8 MB)
    • 2 - Define tools.mp4 (42.3 MB)
    • 3 - Select the perfect prompt.mp4 (7.7 MB)
    • 4 - Bind tools and create agent.mp4 (18.4 MB)
    • 5 - Create and run the agent executor.mp4 (41.7 MB)
    • 6 - Challenge Create a multitask agent.mp4 (45.5 MB)
    • 7 - Solution Define tools and functions.mp4 (53.9 MB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
R2-CACHE ☁️ R2 (hit) | CDN: MISS (0s) 📄 torrent 🕐 01 Jan 2026, 11:14:48 pm IST ⏰ 26 Jan 2026, 11:14:48 pm IST ✅ Valid for 5d 21h 🔄 Refresh Cache