Udemy - Generative AI Skillpath - Zero to Hero in Generative AI

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 3.8 GB
  • Uploaded By freecoursewb
  • Downloads 387
  • Last checked 2 hours ago
  • Date uploaded 2 months ago
  • Seeders 16
  • Leechers 5

Infohash : C605B20AD9A2A0C6BA34D34D3E506518210BF2CC



Generative AI Skillpath: Zero to Hero in Generative AI

https://WebToolTip.com

Published 10/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 10h 15m | Size: 3.78 GB

Complete course on Generative AI: Prompting Engineering, Running LLMs locally (Ollama), Building AI apps using LangChain

What you'll learn
Design and engineer effective prompts using proven frameworks like Chain-of-Thought, Step-Back, and Role prompting.
Tune and control LLM behavior by adjusting hyperparameters such as temperature, top-p, max tokens, and penalties.
Run and customize Large Language Models locally using Ollama and integrate them with Python applications.
Build complete Generative AI workflows using LangChain, including prompt templates, chains, memory, and dynamic routing.
Develop Retrieval-Augmented Generation (RAG) systems that combine LLMs with vector databases for grounded, factual answers.
Design user-friendly AI interfaces using Streamlit and explore On-Device AI deployment with Qualcomm AI Hub.

Requirements
No prior AI or coding experience requiredβ€”just a curious mindset, basic computer skills, and a PC with internet access.

Files:

[ WebToolTip.com ] Udemy - Generative AI Skillpath - Zero to Hero in Generative AI
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction
    • 1 - Introduction.mp4 (63.9 MB)
    10 - Retrieval Augmented Generation - Building your own RAG applications
    • 1 - Retrieval Augmented Generation Concepts.mp4 (47.0 MB)
    • 2 - Step 1 Reading Documents in RAG Workflow.mp4 (82.3 MB)
    • 3 - Step 2 Creating Chunks in the RAG Process.mp4 (65.2 MB)
    • 4 - Step 3 Generating Embeddings in the RAG Workflow.mp4 (40.0 MB)
    • 5 - Step 4 Storing Embeddings in a Vector Database.mp4 (60.8 MB)
    • 6 - Building an End-to-End RAG Application.mp4 (73.6 MB)
    11 - Tools and Agents Building your own AI Agents
    • 1 - Overview of Tools and Agents in LangChain.mp4 (29.6 MB)
    • 2 - Developing Custom Tools with LangChain.mp4 (73.6 MB)
    • 3 - LangChain Built-in Tools DuckDuckGo Search and Wikipedia.mp4 (70.2 MB)
    • 4 - Working with Agents in LangChain.mp4 (79.1 MB)
    • 5 - Building a Memory-Enabled Agent in LangChain.mp4 (44.5 MB)
    12 - LangSmith for monitoring our Application
    • 1 - Overview of LangSmith and Its Capabilities.mp4 (19.4 MB)
    • 2 - Running and Monitoring Applications Using LangSmith.mp4 (65.3 MB)
    13 - Creating Graphical UI using Streamlit for our application
    • 1 - Introduction to Streamlit.mp4 (34.6 MB)
    • 2 - Building a GUI for Your GenAI App Using Streamlit.mp4 (50.0 MB)
    14 - What's under the hood Understanding the foundations of LLMs
    • 1 - Strengths and Limitations of Generative AI - foundation of AI.pdf (3.2 MB)
    • 1 - Strengths and Limitations of Generative AI.mp4 (75.0 MB)
    • 2 - Generative AI The Magic Behind the Mechanism.mp4 (71.3 MB)
    • 3 - Understanding How AI Learns.mp4 (92.8 MB)
    • 4 - Evolution from Linear Regression to Neural Networks.mp4 (77.8 MB)
    • 5 - Understanding Tokens and Embeddings.mp4 (61.7 MB)
    • 6 - Inside Transformers β€” The Core Architecture of LLMs.mp4 (34.5 MB)
    • 7 - How Language Models Generate Predictions.mp4 (47.4 MB)
    • 8 - Pre-Training vs Fine-Tuning β€” How Models Evolve.mp4 (51.6 MB)
    • 9 - Exploring Open-Source LLMs.mp4 (18.6 MB)
    15 - Getting Started with On-Device AI
    • 1 - What is On-Device AI.mp4 (22.5 MB)
    • 2 - Exploring the Qualcomm AI Hub.mp4 (42.5 MB)
    • 3 - Setting Up and Logging Into Qualcomm AI Hub.mp4 (17.1 MB)
    16 - Model Training & Deployment Steps
    • 1 - Understanding On-Device Model Deployment Steps.mp4 (31.0 MB)
    • 2 - Model Training Phase – Concepts & Workflow.mp4 (35.3 MB)
    • 3 - Hands-On Model Training in Practice.mp4 (32.3 MB)
    17 - Model Compilation & Profiling
    • 1 - Model Compilation – Concepts and Process.mp4 (43.6 MB)
    • 2 - Hands-On Model Compilation.mp4 (30.1 MB)
    • 3 - Model Profiling – Theory & Performance Insights.mp4 (17.6 MB)
    • 4 - Practical Model Profiling Exercise.mp4 (65.2 MB)
    18 - Model Optimization & Deployment
    • 1 - Running Model Inference on Device.mp4 (63.2 MB)
    • 2 - Exporting and Downloading Your Model.mp4 (70.5 MB)
    • 3 - Overview to Quantization.mp4 (25.5 MB)
    • 4 - Symmetric Quantization Explained.mp4 (42.8 MB)
    • 5 - Asymmetric Quantization Explained.mp4 (52.5 MB)
    • 6 - Applying Quantization Techniques – Hands-On.mp4 (69.1 MB)
    19 - Conclusion
    • 1 - About your certificate.html (0.9 KB)
    • 1 - Bonus lecture.html (9.1 KB)
    • 2 - Bonus lecture.html (9.1 KB)
    2 - Prompt Engineering
    • 1 - Crafting Effective Prompts Be Detailed and Specific.mp4 (20.9 MB)
    • 10 - Thought structures Skeleton-of-Thought Prompting.mp4 (24.8 MB)
    • 11 - Thought structures Program-of-Thought Prompting.mp4 (32.9 MB)
    • 2 - Best Practices for Prompting.mp4 (35.2 MB)
    • 3 - Using Prompt Templates for Consistency.mp4 (32.0 MB)
    • 4 - Prompting Framework Chain of Thought.mp4 (114.7 MB)
    • 5 - Prompting Framework Step-Back Reasoning.mp4 (29.5 MB)
    • 6 - Prompting Framework Role Prompting.mp4 (21.0 MB)
    • 7 - Prompting Framework Self-Consistency.mp4 (26.5 MB)
    • 8 - Prompting Framework Chain-of-Density.mp4 (53.9 MB)
    • 9 - Thought structure Tree-of-Thought Prompting.mp4 (102.1 MB)
    3 - Prompt hyperparameters and their tuning
    • 1 - Understanding Prompt Hyperparameters.mp4 (39.5 MB)
    • 2 - Temperature & Top-p Controlling Randomness.mp4 (61.5 MB)
    • 3 - Max Tokens & Stop Sequences Managing Output Length.mp4 (23.0 MB)
    • 4 - Presence & Frequency Penalties Adding Variety.mp4 (15.7 MB)
    • 5 - Tuning Prompt Parameters for Optimal Results - Prompt+parameter+tuning.ipynb (10.9 KB)
    • 5 - Tuning Prompt Parameters for Optimal Results.mp4 (82.8 MB)
    4 - Prompt evaluation
    • 1 - Three Methods to Evaluate Prompt Quality.mp4 (42.2 MB)
    • 2 - Conducting Prompt AB Testing.mp4 (21.4 MB)
    • 3 - Evaluating Prompts with PromptFoo - Link to download nodejs.url (0.1 KB)
    • 3 - Evaluating Prompts with PromptFoo - Prompts+and+test+cases+for+promptfoo.docx (13.9 KB)
    • 3 - Evaluating Prompts with PromptFoo.mp4 (136.6 MB)
    • 3 -Link to download nodejs.url (0.1 KB)
    5 - Running LLMs Locally on your PC
    • 1 - Downloading and Installing Ollama Setup.mp4 (14.7 MB)
    • 2 - Configuring Ollama and downloading models.mp4 (42.4 MB)
    • 3 - Model customization via Command Line or Terminal.mp4 (47.3 MB)
    • 4 - Building, Saving, and Implementing a Custom Ollama Model.mp4 (33.3 MB)
    6 - Using Ollama with Python
    • 1 - Configuring the Python Environment.mp4 (21.2 MB)
    • 2 - Working with the Ollama Library in Python.mp4 (56.1 MB)
    • 3 - Invoking the Model via the Ollama REST API.mp4 (23.7 MB)
    7 - Building LLM Applications using LangChain in Python
    • 1 - Understanding LangChain Objectives and Core Benefits.mp4 (25.5 MB)
    • 2 - LangChain Fundamentals Prompt Templates and LLM Models.mp4 (28.9 MB)
    • 3 - LangChain Fundamentals Formatting the Output.mp4 (39.0 MB)
    8 - Chains and Runnables (LangChain Expressions Language)
    • 1 - Using the Pipe Operator in LCEL.mp4 (47.6 MB)
    • 2 - Understanding Runnables Theoretical Foundations.mp4 (20.3 MB)
    • 3 - Runnable Types Parallel, Passthrough, and Lambda.mp4 (25.3 MB)
    • 4 - Example Managing Execution Flow with LCEL.mp4 (90.5 MB)
    • 5 - Understanding Dynamic Routing in LangChain.mp4 (21.3 MB)
    • 6 - Implementing Dynamic Routing in LCEL.mp4 (76.4 MB)
    9 - Memory in LangChain
    • 1 - Overview to Memory in LangChain.mp4 (28.4 MB)
    • 2 - Understanding Conversation Buffer Memory.mp4 (66.4 MB)
    • 3 - Customizing Memory Using Memory Keys and Adding Messages.mp4 (30.0 MB)
    • 4 - Implementing Conversation Chains.mp4 (26.7 MB)
    • 5 - Working with Conversation Buffer Window Memory.mp4 (25.9 MB)
    • 6 - Understanding Conversation Summary Memory.mp4 (30.9 MB)
    • 7 - Using Runnables with Message History.mp4 (40.3 MB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
REVERSE-PROXY πŸ”„ RP (success) | 2186ms πŸ“„ torrent πŸ• 16 Jan 2026, 07:30:09 pm IST ⏰ 10 Feb 2026, 07:30:09 pm IST βœ… Valid for 24d 23h πŸ”„ Wait 10m