Udemy - Generative AI Skillpath - Zero to Hero in Generative AI
- Category Other
- Type Tutorials
- Language English
- Total size 3.8 GB
- Uploaded By freecoursewb
- Downloads 387
- Last checked 2 hours ago
- Date uploaded 2 months ago
- Seeders 16
- Leechers 5
Infohash : C605B20AD9A2A0C6BA34D34D3E506518210BF2CC
Generative AI Skillpath: Zero to Hero in Generative AI
https://WebToolTip.com
Published 10/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 10h 15m | Size: 3.78 GB
Complete course on Generative AI: Prompting Engineering, Running LLMs locally (Ollama), Building AI apps using LangChain
What you'll learn
Design and engineer effective prompts using proven frameworks like Chain-of-Thought, Step-Back, and Role prompting.
Tune and control LLM behavior by adjusting hyperparameters such as temperature, top-p, max tokens, and penalties.
Run and customize Large Language Models locally using Ollama and integrate them with Python applications.
Build complete Generative AI workflows using LangChain, including prompt templates, chains, memory, and dynamic routing.
Develop Retrieval-Augmented Generation (RAG) systems that combine LLMs with vector databases for grounded, factual answers.
Design user-friendly AI interfaces using Streamlit and explore On-Device AI deployment with Qualcomm AI Hub.
Requirements
No prior AI or coding experience requiredβjust a curious mindset, basic computer skills, and a PC with internet access.
Files:
[ WebToolTip.com ] Udemy - Generative AI Skillpath - Zero to Hero in Generative AI- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 1 - Introduction
- 1 - Introduction.mp4 (63.9 MB)
- 1 - Retrieval Augmented Generation Concepts.mp4 (47.0 MB)
- 2 - Step 1 Reading Documents in RAG Workflow.mp4 (82.3 MB)
- 3 - Step 2 Creating Chunks in the RAG Process.mp4 (65.2 MB)
- 4 - Step 3 Generating Embeddings in the RAG Workflow.mp4 (40.0 MB)
- 5 - Step 4 Storing Embeddings in a Vector Database.mp4 (60.8 MB)
- 6 - Building an End-to-End RAG Application.mp4 (73.6 MB)
- 1 - Overview of Tools and Agents in LangChain.mp4 (29.6 MB)
- 2 - Developing Custom Tools with LangChain.mp4 (73.6 MB)
- 3 - LangChain Built-in Tools DuckDuckGo Search and Wikipedia.mp4 (70.2 MB)
- 4 - Working with Agents in LangChain.mp4 (79.1 MB)
- 5 - Building a Memory-Enabled Agent in LangChain.mp4 (44.5 MB)
- 1 - Overview of LangSmith and Its Capabilities.mp4 (19.4 MB)
- 2 - Running and Monitoring Applications Using LangSmith.mp4 (65.3 MB)
- 1 - Introduction to Streamlit.mp4 (34.6 MB)
- 2 - Building a GUI for Your GenAI App Using Streamlit.mp4 (50.0 MB)
- 1 - Strengths and Limitations of Generative AI - foundation of AI.pdf (3.2 MB)
- 1 - Strengths and Limitations of Generative AI.mp4 (75.0 MB)
- 2 - Generative AI The Magic Behind the Mechanism.mp4 (71.3 MB)
- 3 - Understanding How AI Learns.mp4 (92.8 MB)
- 4 - Evolution from Linear Regression to Neural Networks.mp4 (77.8 MB)
- 5 - Understanding Tokens and Embeddings.mp4 (61.7 MB)
- 6 - Inside Transformers β The Core Architecture of LLMs.mp4 (34.5 MB)
- 7 - How Language Models Generate Predictions.mp4 (47.4 MB)
- 8 - Pre-Training vs Fine-Tuning β How Models Evolve.mp4 (51.6 MB)
- 9 - Exploring Open-Source LLMs.mp4 (18.6 MB)
- 1 - What is On-Device AI.mp4 (22.5 MB)
- 2 - Exploring the Qualcomm AI Hub.mp4 (42.5 MB)
- 3 - Setting Up and Logging Into Qualcomm AI Hub.mp4 (17.1 MB)
- 1 - Understanding On-Device Model Deployment Steps.mp4 (31.0 MB)
- 2 - Model Training Phase β Concepts & Workflow.mp4 (35.3 MB)
- 3 - Hands-On Model Training in Practice.mp4 (32.3 MB)
- 1 - Model Compilation β Concepts and Process.mp4 (43.6 MB)
- 2 - Hands-On Model Compilation.mp4 (30.1 MB)
- 3 - Model Profiling β Theory & Performance Insights.mp4 (17.6 MB)
- 4 - Practical Model Profiling Exercise.mp4 (65.2 MB)
- 1 - Running Model Inference on Device.mp4 (63.2 MB)
- 2 - Exporting and Downloading Your Model.mp4 (70.5 MB)
- 3 - Overview to Quantization.mp4 (25.5 MB)
- 4 - Symmetric Quantization Explained.mp4 (42.8 MB)
- 5 - Asymmetric Quantization Explained.mp4 (52.5 MB)
- 6 - Applying Quantization Techniques β Hands-On.mp4 (69.1 MB)
- 1 - About your certificate.html (0.9 KB)
- 1 - Bonus lecture.html (9.1 KB)
- 2 - Bonus lecture.html (9.1 KB)
- 1 - Crafting Effective Prompts Be Detailed and Specific.mp4 (20.9 MB)
- 10 - Thought structures Skeleton-of-Thought Prompting.mp4 (24.8 MB)
- 11 - Thought structures Program-of-Thought Prompting.mp4 (32.9 MB)
- 2 - Best Practices for Prompting.mp4 (35.2 MB)
- 3 - Using Prompt Templates for Consistency.mp4 (32.0 MB)
- 4 - Prompting Framework Chain of Thought.mp4 (114.7 MB)
- 5 - Prompting Framework Step-Back Reasoning.mp4 (29.5 MB)
- 6 - Prompting Framework Role Prompting.mp4 (21.0 MB)
- 7 - Prompting Framework Self-Consistency.mp4 (26.5 MB)
- 8 - Prompting Framework Chain-of-Density.mp4 (53.9 MB)
- 9 - Thought structure Tree-of-Thought Prompting.mp4 (102.1 MB)
- 1 - Understanding Prompt Hyperparameters.mp4 (39.5 MB)
- 2 - Temperature & Top-p Controlling Randomness.mp4 (61.5 MB)
- 3 - Max Tokens & Stop Sequences Managing Output Length.mp4 (23.0 MB)
- 4 - Presence & Frequency Penalties Adding Variety.mp4 (15.7 MB)
- 5 - Tuning Prompt Parameters for Optimal Results - Prompt+parameter+tuning.ipynb (10.9 KB)
- 5 - Tuning Prompt Parameters for Optimal Results.mp4 (82.8 MB)
- 1 - Three Methods to Evaluate Prompt Quality.mp4 (42.2 MB)
- 2 - Conducting Prompt AB Testing.mp4 (21.4 MB)
- 3 - Evaluating Prompts with PromptFoo - Link to download nodejs.url (0.1 KB)
- 3 - Evaluating Prompts with PromptFoo - Prompts+and+test+cases+for+promptfoo.docx (13.9 KB)
- 3 - Evaluating Prompts with PromptFoo.mp4 (136.6 MB)
- 3 -Link to download nodejs.url (0.1 KB)
- 1 - Downloading and Installing Ollama Setup.mp4 (14.7 MB)
- 2 - Configuring Ollama and downloading models.mp4 (42.4 MB)
- 3 - Model customization via Command Line or Terminal.mp4 (47.3 MB)
- 4 - Building, Saving, and Implementing a Custom Ollama Model.mp4 (33.3 MB)
- 1 - Configuring the Python Environment.mp4 (21.2 MB)
- 2 - Working with the Ollama Library in Python.mp4 (56.1 MB)
- 3 - Invoking the Model via the Ollama REST API.mp4 (23.7 MB)
- 1 - Understanding LangChain Objectives and Core Benefits.mp4 (25.5 MB)
- 2 - LangChain Fundamentals Prompt Templates and LLM Models.mp4 (28.9 MB)
- 3 - LangChain Fundamentals Formatting the Output.mp4 (39.0 MB)
- 1 - Using the Pipe Operator in LCEL.mp4 (47.6 MB)
- 2 - Understanding Runnables Theoretical Foundations.mp4 (20.3 MB)
- 3 - Runnable Types Parallel, Passthrough, and Lambda.mp4 (25.3 MB)
- 4 - Example Managing Execution Flow with LCEL.mp4 (90.5 MB)
- 5 - Understanding Dynamic Routing in LangChain.mp4 (21.3 MB)
- 6 - Implementing Dynamic Routing in LCEL.mp4 (76.4 MB)
- 1 - Overview to Memory in LangChain.mp4 (28.4 MB)
- 2 - Understanding Conversation Buffer Memory.mp4 (66.4 MB)
- 3 - Customizing Memory Using Memory Keys and Adding Messages.mp4 (30.0 MB)
- 4 - Implementing Conversation Chains.mp4 (26.7 MB)
- 5 - Working with Conversation Buffer Window Memory.mp4 (25.9 MB)
- 6 - Understanding Conversation Summary Memory.mp4 (30.9 MB)
- 7 - Using Runnables with Message History.mp4 (40.3 MB)
- Bonus Resources.txt (0.1 KB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce