Udemy - Python for Deep Learning - Build Neural Networks in Pytho...

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 785.3 MB
  • Uploaded By freecoursewb
  • Downloads 465
  • Last checked 6 hours ago
  • Date uploaded 2 months ago
  • Seeders 19
  • Leechers 3

Infohash : 1B9D826F935EF6FF69DB592DEA79FDCF76339726



Python for Deep Learning: Build Neural Networks in Python

https://WebToolTip.com

Last updated 1/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 2h 4m | Size: 785 MB

Complete Deep Learning Course to Master Data science, Tensorflow, Artificial Intelligence, and Neural Networks

What you'll learn
Learn the fundamentals of the Deep Learning theory
Learn how to use Deep Learning in Python
Learn how to use different frameworks in Python to solve real-world problems using deep learning and artificial intelligence
Make predictions using linear regression, polynomial regression, and multivariate regression
Build artificial neural networks with Tensorflow and Keras

Requirements
Experience with the basics of coding in Python
Basic mathematical skills
Readiness, flexibility, and passion for learning

Files:

[ WebToolTip.com ] Udemy - Python for Deep Learning - Build Neural Networks in Python
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction to Deep Learning
    • 1 - What is a Deep Learning.en_US.vtt (3.4 KB)
    • 1 - What is a Deep Learning.mp4 (11.6 MB)
    • 2 - Course Materials - ANN_Codes.ipynb (2.7 MB)
    • 2 - Course Materials - CNN_Codes.ipynb (5.2 KB)
    • 2 - Course Materials - Churn_Modelling.csv (668.8 KB)
    • 2 - Course Materials - Course Slides.pdf (4.3 MB)
    • 2 - Course Materials - mnist_test.csv (17.5 MB)
    • 2 - Course Materials - mnist_train.csv (104.6 MB)
    • 2 - Course Materials.html (0.1 KB)
    • 3 - Why is Deep Learning Important.en_US.vtt (1.8 KB)
    • 3 - Why is Deep Learning Important.mp4 (7.1 MB)
    • 4 - Software and Frameworks.en_US.vtt (0.8 KB)
    • 4 - Software and Frameworks.mp4 (5.4 MB)
    10 - Implementation of CNN in Python
    • 1 - Dataset.en_US.vtt (0.8 KB)
    • 1 - Dataset.mp4 (6.2 MB)
    • 2 - Importing libraries.en_US.vtt (2.1 KB)
    • 2 - Importing libraries.mp4 (11.1 MB)
    • 3 - Building the CNN model.en_US.vtt (9.7 KB)
    • 3 - Building the CNN model.mp4 (47.6 MB)
    • 4 - Accuracy of the model.en_US.vtt (0.7 KB)
    • 4 - Accuracy of the model.mp4 (8.8 MB)
    11 - BONUS Section - Don't Miss Out
    • 1 - BONUS Section - Don't Miss Out.html (0.9 KB)
    2 - Artificial Neural Networks (ANN)
    • 1 - Introduction.en_US.vtt (1.3 KB)
    • 1 - Introduction.mp4 (8.9 MB)
    • 2 - Anatomy and function of neurons.en_US.vtt (1.3 KB)
    • 2 - Anatomy and function of neurons.mp4 (7.2 MB)
    • 3 - An introduction to the neural network.en_US.vtt (3.1 KB)
    • 3 - An introduction to the neural network.mp4 (11.5 MB)
    • 4 - Architecture of a neural network.en_US.vtt (1.5 KB)
    • 4 - Architecture of a neural network.mp4 (9.1 MB)
    3 - Propagation of information in ANNs
    • 1 - Feed-forward and Back Propagation Networks.en_US.vtt (1.1 KB)
    • 1 - Feed-forward and Back Propagation Networks.mp4 (5.8 MB)
    • 2 - Backpropagation In Neural Networks.en_US.vtt (0.8 KB)
    • 2 - Backpropagation In Neural Networks.mp4 (5.4 MB)
    • 3 - Minimizing the cost function using backpropagation.en_US.vtt (1.4 KB)
    • 3 - Minimizing the cost function using backpropagation.mp4 (5.0 MB)
    4 - Neural Network Architectures
    • 1 - Single layer perceptron (SLP) model.en_US.vtt (1.0 KB)
    • 1 - Single layer perceptron (SLP) model.mp4 (4.7 MB)
    • 2 - Radial Basis Network (RBN).en_US.vtt (0.8 KB)
    • 2 - Radial Basis Network (RBN).mp4 (4.4 MB)
    • 3 - Multi-layer perceptron (MLP) Neural Network.en_US.vtt (0.7 KB)
    • 3 - Multi-layer perceptron (MLP) Neural Network.mp4 (4.7 MB)
    • 4 - Recurrent neural network (RNN).en_US.vtt (1.1 KB)
    • 4 - Recurrent neural network (RNN).mp4 (6.0 MB)
    • 5 - Long Short-Term Memory (LSTM) networks.en_US.vtt (1.3 KB)
    • 5 - Long Short-Term Memory (LSTM) networks.mp4 (6.5 MB)
    • 6 - Hopfield neural network.en_US.vtt (1.1 KB)
    • 6 - Hopfield neural network.mp4 (5.3 MB)
    • 7 - Boltzmann Machine Neural Network.en_US.vtt (0.8 KB)
    • 7 - Boltzmann Machine Neural Network.mp4 (4.7 MB)
    5 - Activation Functions
    • 1 - What is the Activation Function.en_US.vtt (1.6 KB)
    • 1 - What is the Activation Function.mp4 (8.6 MB)
    • 2 - Important Terminologies.en_US.vtt (0.7 KB)
    • 2 - Important Terminologies.mp4 (4.6 MB)
    • 3 - The sigmoid function.en_US.vtt (2.0 KB)
    • 3 - The sigmoid function.mp4 (7.1 MB)
    • 4 - Hyperbolic tangent function.en_US.vtt (1.2 KB)
    • 4 - Hyperbolic tangent function.mp4 (6.3 MB)
    • 5 - Softmax function.en_US.vtt (0.8 KB)
    • 5 - Softmax function.mp4 (4.2 MB)
    • 6 - Rectified Linear Unit (ReLU) function.en_US.vtt (1.4 KB)
    • 6 - Rectified Linear Unit (ReLU) function.mp4 (5.3 MB)
    • 7 - Leaky Rectified Linear Unit function.en_US.vtt (0.8 KB)
    • 7 - Leaky Rectified Linear Unit function.mp4 (4.0 MB)
    6 - Gradient Descent Algorithm
    • 1 - What is Gradient Decent.en_US.vtt (1.8 KB)
    • 1 - What is Gradient Decent.mp4 (9.4 MB)
    • 2 - What is Stochastic Gradient Decent.en_US.vtt (1.8 KB)
    • 2 - What is Stochastic Gradient Decent.mp4 (6.0 MB)
    • 3 - Gradient Decent vs Stochastic Gradient Decent.en_US.vtt (0.7 KB)
    • 3 - Gradient Decent vs Stochastic Gradient Decent.mp4 (6.2 MB)
    7 - Summary Overview of Neural Networks
    • 1 - How artificial neural networks work.en_US.vtt (3.4 KB)
    • 1 - How artificial neural networks work.mp4 (23.2 MB)
    • 2 - Advantages of Neural Networks.en_US.vtt (1.1 KB)
    • 2 - Advantages of Neural Networks.mp4 (4.2 MB)
    • 3 - Disadvantages of Neural Networks.en_US.vtt (0.7 KB)
    • 3 - Disadvantages of Neural Networks.mp4 (3.4 MB)
    • 4 - Applications of Neural Networks.en_US.vtt (1.8 KB)
    • 4 - Applications of Neural Networks.mp4 (6.4 MB)
    8 - Implementation of ANN in Python
    • 1 - Introduction.en_US.vtt (0.6 KB)
    • 1 - Introduction.mp4 (4.7 MB)
    • 10 - Feature scaling.en_US.vtt (3.4 KB)
    • 10 - Feature scaling.mp4 (23.4 MB)
    • 11 - Building the Artificial Neural Network.en_US.vtt (1.7 KB)
    • 11 - Building the Artificial Neural Network.mp4 (15.9 MB)
    • 12 - Adding the input layer and the first hidden layer.en_US.vtt (2.8 KB)
    • 12 - Adding the input layer and the first hidden layer.mp4 (23.5 MB)
    • 13 - Adding the next hidden layer.en_US.vtt (1.1 KB)
    • 13 - Adding the next hidden layer.mp4 (11.2 MB)
    • 14 - Adding the output layer.en_US.vtt (1.4 KB)
    • 14 - Adding the output layer.mp4 (12.2 MB)
    • 15 - Compiling the artificial neural network.en_US.vtt (2.6 KB)
    • 15 - Compiling the artificial neural network.mp4 (19.6 MB)
    • 16 - Fitting the ANN model to the training set.en_US.vtt (2.0 KB)
    • 16 - Fitting the ANN model to the training set.mp4 (22.4 MB)
    • 17 - Predicting the test set results.en_US.vtt (4.1 KB)
    • 17 - Predicting the test set results.mp4 (25.9 MB)
    • 2 - Exploring the dataset.en_US.vtt (1.1 KB)
    • 2 - Exploring the dataset.mp4 (11.5 MB)
    • 3 - Problem Statement.en_US.vtt (0.7 KB)
    • 3 - Problem Statement.mp4 (3.2 MB)
    • 4 - Data Pre-processing.en_US.vtt (3.5 KB)
    • 4 - Data Pre-processing.mp4 (13.7 MB)
    • 5 - Loading the dataset.en_US.vtt (1.1 KB)
    • 5 - Loading the dataset.mp4 (9.2 MB)
    • 6 - Splitting the dataset into independent and dependent variables.en_US.vtt (2.8 KB)
    • 6 - Splitting the dataset into independent and dependent variables.mp4 (22.8 MB)
    • 7 - Label encoding using scikit-learn.en_US.vtt (3.9 KB)
    • 7 - Label encoding using scikit-learn.mp4 (28.0 MB)
    • 8 - One-hot encoding using scikit-learn.en_US.vtt (5.8 KB)
    • 8 - One-hot encoding using scikit-learn.mp4 (37.9 MB)
    • 9 - Training and Test Sets Splitting Data.en_US.vtt (3.1 KB)
    • 9 - Training and Test Sets Splitting Data.mp4 (26.4 MB)
    9 - Convolutional Neural Networks (CNN)
    • 1 - Introduction.en_US.vtt (3.8 KB)
    • 1 - Introduction.mp4 (21.0 MB)
    • 2 - Components of convolutional neural networks.en_US.vtt (0.9 KB)
    • 2 - Components of convolutional neural networks.mp4 (5.9 MB)
    • 3 - Convolution Layer.en_US.vtt (3.2 KB)
    • 3 - Convolution Layer.mp4 (12.0 MB)
    • 4 - Pooling Layer.en_US.vtt (1.8 KB)
    • 4 - Pooling Layer.mp4 (9.7 MB)
    • 5 - Fully connected Layer.en_US.vtt (1.7 KB)
    • 5 - Fully connected Layer.mp4 (9.4 MB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
R2-CACHE ☁️ R2 (hit) | CDN: MISS (0s) 📄 torrent 🕐 05 Jan 2026, 07:34:35 am IST ⏰ 30 Jan 2026, 07:34:34 am IST ✅ Valid for 13d 11h 🔄 Refresh Cache