Udemy - Statistics with python

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 1.8 GB
  • Uploaded By freecoursewb
  • Downloads 386
  • Last checked 2 days ago
  • Date uploaded 4 months ago
  • Seeders 11
  • Leechers 1

Infohash : 75DD55819F54420B9333E62672C525A48CF23620



Statistics with python

https://WebToolTip.com

Published 8/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 2h 57m | Size: 1.77 GB

Unlocking Data Insights: Statistics with R and Python

What you'll learn
Introduction to Data and Programming Environments
Descriptive Statistics
Probability and Probability Distributions
Sampling and Estimation
Hypothesis Testing Fundamentals
Comparing Groups
Categorical Data Analysis
Correlation and Regression
Requirements
Math
Pc use
Description
Welcome to "Statistics with R and Python," your gateway to mastering the art and science of data analysis with Ai Tools Engeneering- In today's data-driven world, the ability to extract meaningful insights is crucial, and this course provides you with the skills to do so, leveraging two of the most powerful tools in a data professional's arsenal: R and Python. This course is meticulously designed for hands-on learning. You'll begin by building a solid foundation in descriptive statistics and data visualization, transforming raw data into compelling narratives using libraries like ggplot2, Matplotlib, and Seaborn. We then delve into inferential statistics, guiding you through the principles of probability, hypothesis testing, and confidence intervals, enabling you to draw valid conclusions from your data. A significant portion of the course is dedicated to regression analysis, where you'll learn to build and interpret linear and logistic models for forecasting and understanding relationships. Through hands-on exercises and real-world case studies, you'll gain expertise in data cleaning, manipulation, and analysis workflows. By the end of this journey, you'll not only understand statistical concepts but also possess the practical coding skills in both R and Python to effectively apply them across various domains. Join us to transform data into actionable insights! Use data with AI apps to build reliable statistical predictions and get closer to the world of machine learning.β€œThis course contains the use of artificial intelligence.”
Who this course is for
Engeneering
Math

Files:

[ WebToolTip.com ] Udemy - Statistics with python
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction to Data and Programming Environments
    • 1 -Image.JPG (30.0 KB)
    • 1 -Intent of Course and What You Will learn.mp4 (7.2 MB)
    • 1 -IntentOfCOurse.pdf (591.6 KB)
    • 2 -What is Data Science and Statistics.mp4 (48.7 MB)
    • 3 -Introduction to Python Lybraries - Anaconda and Streamlit use.mp4 (62.9 MB)
    • 3 -tg_ (1).pdf (427.3 KB)
    • 4 -EXCERCISE001.csv (0.1 KB)
    • 4 -Exx001.py (1.2 KB)
    • 4 -Import and Read Csv Data in Python Script.mp4 (44.7 MB)
    • 4 -ReadCSvData.mp4 (60.9 MB)
    2 - Covariance - From Theory to Practise
    • 1 -Covariance Theory Explain.mp4 (173.9 MB)
    • 1 -CovariancePAge.html (15.2 KB)
    • 1 -CovariancePAge.pdf (545.6 KB)
    • 2 -008.pdf (19.2 KB)
    • 2 -Covariance Exercise with Python.mp4 (71.4 MB)
    3 - Normal Distribution
    • 1 -Normal Distribution.mp4 (243.1 MB)
    • 1 -Normal_.pdf (721.5 KB)
    • 2 -Normal Distrubution Excercise.mp4 (67.1 MB)
    4 - Correlation and Regression Data Analysis
    • 1 -00252.pdf (330.9 KB)
    • 1 -Correlation - Regression and Data Analysis Introduction.mp4 (14.1 MB)
    • 2 -First Exemple.mp4 (14.9 MB)
    • 2 -Introduction.mp4 (89.4 MB)
    • 2 -Principal Theme.pdf (64.2 KB)
    • 2 -hyper.pdf (226.5 KB)
    • 3 -Correlation coefficients (Pearson, Spearman).mp4 (61.6 MB)
    • 3 -Infographic.pdf (638.2 KB)
    • 3 -StreamLitApplication.py (5.5 KB)
    • 4 -LinearRegression.pdf (640.1 KB)
    • 4 -Linear_REgression_ScratchCode.py (4.7 KB)
    • 4 -Simple Linear Regression.mp4 (23.6 MB)
    • 4 -SimpleLinearRegression.pdf (728.5 KB)
    • 5 -Hyn.pdf (526.4 KB)
    • 5 -Multiple Linear Regression.mp4 (36.4 MB)
    • 6 -Introduction to Logistic Regression (for binary outcomes).mp4 (23.7 MB)
    • 6 -Introduction to Logistic Regression_.pdf (396.8 KB)
    5 - Probability and Probability Distributions
    • 1 -Basic probability concepts (events, sample space, conditional probability).mp4 (49.1 MB)
    • 2 -Random variables.mp4 (21.8 MB)
    • 3 -Common probability distributions (Bernoulli, Binomial, Poisson, Normal, t-distri.mp4 (45.2 MB)
    • 4 -005.pdf (404.9 KB)
    • 4 -Central Limit Theorem.mp4 (36.4 MB)
    • 4 -Infograpfic CentralThoery.pdf (494.6 KB)
    6 - Hypothesis Testing Fundamentals
    • 1 -Hypothesis Testing Fundamentals Concept in Probabilty and Statistics.mp4 (44.3 MB)
    • 2 -Null and alternative hypotheses.mp4 (46.1 MB)
    7 - Descriptive Statistics
    • 1 -Descriptive Statistics - Basic Introduction.mp4 (13.3 MB)
    • 2 -Types of data (qualitative, quantitative, nominal, ordinal, interval, ratio).mp4 (33.3 MB)
    • 2 -Understandig TypeOfDAta.pdf (458.9 KB)
    • 3 -Measures of central tendency (mean, median, mode).mp4 (70.5 MB)
    • 3 -nuovo 150 (1).pdf (410.4 KB)
    • 4 -Measures of dispersion (range, variance, standard deviation, IQR).mp4 (34.6 MB)
    • 4 -Measures of dispersion.pdf (448.9 KB)
    • 5 -Shape of distributions (skewness, kurtosis).mp4 (21.6 MB)
    • 5 -The Shape of Distributions.pdf (343.7 KB)
    • 6 -Data visualization (histograms, box plots, bar charts, scatter plots) - Python.mp4 (20.7 MB)
    • 6 -DataVisualization__.pdf (397.2 KB)
    8 - Comparing Groups
    • 1 -Independent samples t-test.mp4 (20.6 MB)
    • 1 -IndipendentTest.pdf (484.8 KB)
    • 1 -IndipendtentTest.py (2.8 KB)
    • 2 -Paired samples t-test.mp4 (29.9 MB)
    • 2 -PairedTest.pdf (504.0 KB)
    • 3 -ANOVA (One-way, Two-way).mp4 (46.3 MB)
    • 3 -Anova_Test.pdf (512.4 KB)
    • 3 -Anova_Test_app2.py (2.5 KB)
    • 4 -Manning_Whytnnei_Test.py (2.7 KB)
    • 4 -Non-parametric tests (Mann-Whitney U, Wilcoxon signed-rank, Kruskal-Wallis).mp4 (37.2 MB)
    • 4 -NonParameticTEst.pdf (493.4 KB)
    9 - Categorical Data Analysis
    • 1 -CAtegoriacalDAtaAnalysis.pdf (967.9 KB)
    • 1 -Categorical Data Analysis and Chi Test Introduction.mp4 (37.8 MB)
    • 2 -Chi-square test of independence and Chi-square goodness-of-fit test.mp4 (78.9 MB)
    • 2 -ChiQuadro.pdf (652.7 KB)
    • 2 -Kitest_.py (3.3 KB)
    • 3 -ContigentTAble.pdf (440.9 KB)
    • 3 -Contingency tables.mp4 (37.5 MB)
    • 4 -Error estimation in Statistical Data Analysis.mp4 (38.2 MB)
    • 4 -ErrorEstimation.pdf (359.9 KB)
    • 4 -StreamLitApp.py (2.0 KB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
R2-CACHE ☁️ R2 (hit) | CDN: MISS (0s) πŸ“„ torrent πŸ• 16 Jan 2026, 07:28:37 pm IST ⏰ 10 Feb 2026, 07:28:37 pm IST βœ… Valid for 24d 7h πŸ”„ Refresh Cache