Udemy - Credit Scoring with Machine Learning - A Practical Guide
- Category Other
- Type Tutorials
- Language English
- Total size 926.5 MB
- Uploaded By freecoursewb
- Downloads 113
- Last checked 5 days ago
- Date uploaded 5 months ago
- Seeders 1
- Leechers 6
Infohash : 9AF4D2F5B31E430726AA38D60523C4BD15E48720
Credit Scoring with Machine Learning: A Practical Guide
https://WebToolTip.com
Published 7/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 3h 27m | Size: 927 MB
Learn Credit Scoring, Machine Learning, and Python
What you'll learn
Develop a solid understanding of credit scoring and risk-based pricing, and how these concepts are used in real-world lending decisions
Build, train, and evaluate machine learning models using Scikit-learn and Python
Explore and prepare credit data using pandas and Jupyter Notebook
Interpret model outputs and performance metrics, including confusion matrices, ROC curves, AUC, and cost-based evaluation
Understand the impact of false positives and false negatives, and how to balance them in credit scoring use cases
Apply cross-validation techniques, divergence analysis, and risk-based grouping
Use Scikit-learn Pipelines to streamline preprocessing and ensure reproducible, production-ready workflows
Translate technical results into business insights, empowering data-driven decision-making in credit risk and beyond
Requirements
Basic knowledge of data analysis concepts
Basic knowledge of Python (helpful but not required)
No prior experience with credit scoring or machine learning needed
Files:
[ WebToolTip.com ] Udemy - Credit Scoring with Machine Learning - A Practical Guide- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 1 - Welcome to the Course
- 1 -Course Introduction.mp4 (13.5 MB)
- 1 -Introduction.mp4 (7.4 MB)
- 2 -Loan Application Process.mp4 (5.4 MB)
- 3 -Credit Score.mp4 (10.3 MB)
- 4 -Credit Scoring.mp4 (4.6 MB)
- 5 -Risk-Based Pricing.mp4 (8.5 MB)
- 1 -Introduction.mp4 (767.7 KB)
- 2 -Installing Jupyter Notebook Using Anaconda.mp4 (6.5 MB)
- 2 -httpswww.url (0.1 KB)
- 3 -Jupyter Notebook Interface.mp4 (35.7 MB)
- 4 -Key Python Libraries for Data Analysis.mp4 (25.6 MB)
- 4 -check_libraries.ipynb (57.2 KB)
- 4 -matplotlib.url (0.1 KB)
- 4 -pandas.url (0.0 KB)
- 4 -seaborn.url (0.0 KB)
- 5 -Dataset Analysis.mp4 (22.0 MB)
- 5 -credit_scoring_dataset.csv (1.7 MB)
- 5 -demo_eda.ipynb (334.5 KB)
- 1 -Introduction.mp4 (714.6 KB)
- 10 -Logistic Regression Classifier.mp4 (24.2 MB)
- 11 -Balancing False Positives and False Negatives.mp4 (7.7 MB)
- 12 -Logistic Regression Classifier – demo.mp4 (78.6 MB)
- 12 -credit_scoring_dataset.csv (1.7 MB)
- 12 -logistic_regression.ipynb (87.6 KB)
- 13 -DecisionTreeClassifier.url (0.1 KB)
- 13 -Random Forest.mp4 (50.5 MB)
- 13 -RandomForestClassifier.url (0.1 KB)
- 13 -decision_tree_visualization.ipynb (687.9 KB)
- 14 -Decision Tree Structure.mp4 (12.1 MB)
- 14 -decision_tree_visualization.ipynb (687.9 KB)
- 15 -Random Forest – demo.mp4 (62.4 MB)
- 15 -random_forest.ipynb (129.2 KB)
- 16 -Scikit-learn Pipeline.mp4 (6.5 MB)
- 17 -Scikit-learn Pipeline – demo.mp4 (89.7 MB)
- 17 -random_forest_pipeline.ipynb (118.8 KB)
- 18 -Saving and Loading Machine Learning Models for Predictions.mp4 (12.3 MB)
- 19 -Predictions with Random Forest Pipeline – demo.mp4 (10.9 MB)
- 19 -random_forest_pipeline_predictions.ipynb (8.7 KB)
- 2 -Exploring the Credit Scoring Dataset.mp4 (9.0 MB)
- 2 -essential_features_for_effective_credit_scoring.ipynb (20.0 KB)
- 20 -k-fold cross-validation.mp4 (28.8 MB)
- 21 -k-fold cross-validation – demo.mp4 (70.7 MB)
- 21 -random_forest_kfold.ipynb (8.7 KB)
- 22 -ROC, AUC, and Cost-Based Metrics.mp4 (33.4 MB)
- 22 -auc_and_roc_curve.ipynb (65.0 KB)
- 23 -Divergence Analysis.mp4 (24.5 MB)
- 23 -divergence_analysis.ipynb (158.8 KB)
- 24 -Risk-Based Grouping.mp4 (92.4 MB)
- 24 -data.joblib (969.0 KB)
- 24 -rf_model.joblib (27.5 MB)
- 24 -risk_based_grouping.ipynb (168.2 KB)
- 25 -Wrapping Up Key Takeaways and Next Steps.mp4 (14.6 MB)
- 3 -Types of Machine Learning.mp4 (18.0 MB)
- 4 -Machine Learning Workflow Overview.mp4 (20.3 MB)
- 5 -Introduction to Scikit-Learn.mp4 (39.6 MB)
- 6 -Confusion Matrix.mp4 (9.1 MB)
- 7 -Implications of False Positives in Credit Scoring.mp4 (10.6 MB)
- 8 -Implications of False Negatives in Credit Scoring.mp4 (9.7 MB)
- 9 -Performance Metrics.mp4 (15.7 MB)
- Bonus Resources.txt (0.1 KB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce