Python for Time Series Forecasting (2025)

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 750.8 MB
  • Uploaded By freecoursewb
  • Downloads 289
  • Last checked 3 days ago
  • Date uploaded 5 months ago
  • Seeders 11
  • Leechers 8

Infohash : 3C6D3ADE523F621ABA2F35FA894753C5763A4468



Python for Time Series Forecasting (2025)

https://WebToolTip.com

Released 07/2025
With Jesus Lopez
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Skill level: Intermediate | Genre: eLearning | Language: English + subtitle | Duration: 4h 19m 11s | Size: 750 MB

Master time series forecasting in Python using real datasets, with hands-on skills in preprocessing, visualization, decomposition, model selection, and diagnostics.

Course details
Learn practical time series forecasting with Python using real-world datasets from energy (EIA – U.S. Energy Information Administration) and economics (FRED – Federal Reserve Economic Data).
Build skills step by step, from loading and preprocessing time series data to decomposing trends and seasonality, visualizing patterns with Plotly, and applying forecasting models like ARIMA, SARIMA, exponential smoothing, and Prophet. Learn to evaluate model performance using error metrics and cross-validation techniques like walk-forward validation.
The course emphasizes hands-on exercises in a GitHub Codespaces environment, so you can immediately apply what you learn to your own datasets. Whether you’re working with sales, energy, or financial data, you’ll gain the skills to generate accurate, interpretable forecasts that drive real-world decisions.

Files:

[ WebToolTip.com ] Python for Time Series Forecasting (2025)
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 0 - Introduction
    • 1. Why learn practical Python for time series forecasting.mp4 (3.8 MB)
    • 1. Why learn practical Python for time series forecasting.srt (1.0 KB)
    • 2. How to use Codespaces.mp4 (9.2 MB)
    • 2. How to use Codespaces.srt (4.6 KB)
    1 - Foundations Load and Preprocess Time Series Data Files
    • 1. Search and download Federal Reserve Economic Data.mp4 (4.5 MB)
    • 1. Search and download Federal Reserve Economic Data.srt (1.9 KB)
    • 2. Load CSV and set dtype as datetime.mp4 (12.6 MB)
    • 2. Load CSV and set dtype as datetime.srt (6.8 KB)
    • 3. Datetime components on different columns.mp4 (2.4 MB)
    • 3. Datetime components on different columns.srt (1.4 KB)
    • 4. Why set the datetime column as index.mp4 (8.4 MB)
    • 4. Why set the datetime column as index.srt (4.9 KB)
    • 5. Load and preprocess data from Excel.mp4 (5.6 MB)
    • 5. Load and preprocess data from Excel.srt (3.4 KB)
    10 - Assignment 2
    • 1. Configure a template notebook based on new datasets.mp4 (39.8 MB)
    • 1. Configure a template notebook based on new datasets.srt (16.6 KB)
    11 - Exponential Smoothing Models
    • 1. SARIMA vs. exponential smoothing.mp4 (3.5 MB)
    • 1. SARIMA vs. exponential smoothing.srt (1.9 KB)
    • 2. Model fit and forecast.mp4 (7.2 MB)
    • 2. Model fit and forecast.srt (3.0 KB)
    • 3. Understand model configurations based on playground.mp4 (8.4 MB)
    • 3. Understand model configurations based on playground.srt (3.8 KB)
    • 4. Diagnostics to validate assumptions and inform model choice.mp4 (7.7 MB)
    • 4. Diagnostics to validate assumptions and inform model choice.srt (3.6 KB)
    12 - Prophet Modeling
    • 1. Introduction to Prophet A semi-automatic time series model.mp4 (6.7 MB)
    • 1. Introduction to Prophet A semi-automatic time series model.srt (2.8 KB)
    • 2. Model fit step by step.mp4 (16.8 MB)
    • 2. Model fit step by step.srt (7.3 KB)
    • 3. Feed holidays data into the model.mp4 (5.8 MB)
    • 3. Feed holidays data into the model.srt (2.4 KB)
    • 4. Data preprocessing to forecast and visualize values.mp4 (6.4 MB)
    • 4. Data preprocessing to forecast and visualize values.srt (2.9 KB)
    • 5. Configure seasonality parameters in Prophet.mp4 (5.9 MB)
    • 5. Configure seasonality parameters in Prophet.srt (2.8 KB)
    • 6. How to interpret diagnostics with robust models.mp4 (3.9 MB)
    • 6. How to interpret diagnostics with robust models.srt (1.9 KB)
    13 - Evaluate and Compare Time Series Models Train Test Split
    • 1. Why test on unseen data during model fit.mp4 (13.6 MB)
    • 1. Why test on unseen data during model fit.srt (6.4 KB)
    • 2. Train-test split for one model.mp4 (22.7 MB)
    • 2. Train-test split for one model.srt (10.7 KB)
    • 3. Evaluate multiple models at once.mp4 (25.7 MB)
    • 3. Evaluate multiple models at once.srt (9.7 KB)
    14 - Assignment 3
    • 1. Configure a template notebook based on new datasets.mp4 (40.4 MB)
    • 1. Configure a template notebook based on new datasets.srt (14.3 KB)
    15 - Walk-Forward Validation
    • 1. Walk-forward validation as a more realistic choice.mp4 (7.1 MB)
    • 1. Walk-forward validation as a more realistic choice.srt (2.9 KB)
    • 2. Run a walk-forward experiment with multiple models.mp4 (26.6 MB)
    • 2. Run a walk-forward experiment with multiple models.srt (10.1 KB)
    • 3. How does TimeSeriesSplit work to produce walk-forward sets.mp4 (13.1 MB)
    • 3. How does TimeSeriesSplit work to produce walk-forward sets.srt (5.8 KB)
    16 - Conclusion
    • 1. Next steps.mp4 (3.4 MB)
    • 1. Next steps.srt (1.6 KB)
    2 - Visualize Time Series Data
    • 1. Methods to visualize data with Python.mp4 (7.8 MB)
    • 1. Methods to visualize data with Python.srt (3.2 KB)
    • 2. Python libraries for data visualization.mp4 (10.7 MB)
    • 2. Python libraries for data visualization.srt (6.3 KB)
    • 3. Set Plotly as pandas backend for plotting.mp4 (4.0 MB)
    • 3. Set Plotly as pandas backend for plotting.srt (2.0 KB)
    • 4. Customize default Plotly theme.mp4 (10.6 MB)
    • 4. Customize default Plotly theme.srt (5.1 KB)
    • 5. How to interpret different plot types.mp4 (8.5 MB)
    • 5. How to interpret different plot types.srt (4.2 KB)
    • 6. Tricks to visualize multiple time series at once.mp4 (7.9 MB)
    • 6. Tricks to visualize multiple time series at once.srt (4.1 KB)
    3 - Time Series Decomposition
    • 1. Decomposing California solar energy using data from EIA.mp4 (6.9 MB)
    • 1. Decomposing California solar energy using data from EIA.srt (2.9 KB)
    • 2. Data preprocessing for insightful decomposition.mp4 (15.0 MB)
    • 2. Data preprocessing for insightful decomposition.srt (6.7 KB)
    • 3. Seasonal decompose with Statsmodels.mp4 (8.9 MB)
    • 3. Seasonal decompose with Statsmodels.srt (4.4 KB)
    • 4. Interpret decomposition models Additive vs. multiplicative.mp4 (10.8 MB)
    • 4. Interpret decomposition models Additive vs. multiplicative.srt (5.3 KB)
    • 5. Build DataFrame of components.mp4 (13.9 MB)
    • 5. Build DataFrame of components.srt (5.5 KB)
    • 6. Compare models using Plotly interactive visualization.mp4 (15.9 MB)
    • 6. Compare models using Plotly interactive visualization.srt (6.3 KB)
    4 - Assignment 1
    • 1. Download US energy data using Python with EIA API.mp4 (27.1 MB)
    • 1. Download US energy data using Python with EIA API.srt (9.2 KB)
    • 2. Configure a template notebook based on new datasets.mp4 (36.6 MB)
    • 2. Configure a template notebook based on new datasets.srt (13.1 KB)
    • 3. How to specify the aggregation rule and periods.mp4 (8.2 MB)
    • 3. How to specify the aggregation rule and periods.srt (3.2 KB)
    • 4. Using Copilot to interpret a visual report with AI.mp4 (8.9 MB)
    • 4. Using Copilot to interpret a visual report with AI.srt (3.2 KB)
    5 - Model Time Series to Forecast Baseline Models
    • 1. Intuition behind forecasting models.mp4 (4.8 MB)
    • 1. Intuition behind forecasting models.srt (2.6 KB)
    • 2. Build DataFrame to gather forecasted future values.mp4 (16.7 MB)
    • 2. Build DataFrame to gather forecasted future values.srt (7.7 KB)
    • 3. Moving average method.mp4 (16.9 MB)
    • 3. Moving average method.srt (7.6 KB)
    • 4. Seasonal naive method.mp4 (6.1 MB)
    • 4. Seasonal naive method.srt (3.0 KB)
    6 - Autoregressive Integrated Moving Average (ARIMA)
    • 1. Introduction to developing ARIMA models.mp4 (7.4 MB)
    • 1. Introduction to developing ARIMA models.srt (3.0 KB)
    • 2. Fit mathematical equation model.mp4 (12.4 MB)
    • 2. Fit mathematical equation model.srt (5.5 KB)
    • 3. How ARIMA changes with parameters P, D, and Q.mp4 (5.0 MB)
    • 3. How ARIMA changes with parameters P, D, and Q.srt (2.1 KB)
    • 4. Differencing to achieve stationarity.mp4 (13.5 MB)
    • 4. Differencing to achieve stationarity.srt (6.3 KB)
    • 5. ACF and PACF.mp4 (18.2 MB)
    • 5. ACF and PACF.srt (8.4 KB)
    • 6. Playground to try different configurations.mp4 (16.9 MB)
    • 6. Playground to try different configurations.srt (6.0 KB)
    • 7. Diagnostics to validate assumptions.mp4 (24.5 MB)
    • 7. Diagnostics to validate assumptions.srt (11.4 KB)
    • 8. Summary Important steps to consider in ARIMA modeling.mp4 (7.4 MB)
    • 8. Summary Important steps to consider in ARIMA modeling.srt (3.8 KB)
    7 - Seasonal Autoregressive Integrated Moving Average (SARIMA)
    • 1. Introducing seasonal order with SARIMA model.mp4 (5.8 MB)
    • 1. Introducing seasonal order with SARIMA model.srt (2.0 KB)
    • 2. Model fit and forecast.mp4 (11.3 MB)
    • 2. Model fit and forecast.srt (5.1 KB)
    • 3. Diagnostics to validate assumptions.mp4 (5.6 MB)
    • 3. Diagnostics to validate assumptions.srt (3.2 KB)
    • 4. Summary From ARIMA to SARIMA.mp4 (6.9 MB)
    • 4. Summary From ARIMA to SARIMA.srt (2.9 KB)
    8 - Data Stationarity
    • 1. How does stationarity look in a time series.mp4 (3.0 MB)
    • 1. How does stationarity look in a time series.srt (1.5 KB)
    • 2. Log transformation to achieve data stationarity.mp4 (10.4 MB)
    • 2. Log transformation to achieve data stationarity.srt (4.8 KB)
    • 3. Reverse log transformation on forecasted data.mp4 (7.4 MB)
    • 3. Reverse log transformation on forecasted data.srt (3.7 KB)
    • 4. Data transformations to achieve stationarity.mp4 (6.2 MB)
    • 4. Data transformations to achieve stationarity.srt (3.1 KB)
    9 - Metrics to Measure Model Performance
    • 1. Why use a metric that aggregates the residuals of a model.mp4 (7.7 MB)
    • 1. Why use a metric that aggregates the residuals of a model.srt (3.1 KB)
    • 2. Error metrics and steps to calculate.mp4 (15.8 MB)
    • 2. Error metrics and steps to calculate.srt (6.9 KB)
    • 3. Interpretation of metrics in business terms.mp4 (7.5 MB)
    • 3. Interpretation of metrics in business terms.srt (4.2 KB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
GDRIVE-CACHE πŸ“ GD (hit) | ID: 1Y0LFmekN8... πŸ“„ torrent πŸ• 09 Jan 2026, 06:09:58 pm IST ⏰ 03 Feb 2026, 06:09:54 pm IST βœ… Valid for 14d 22h πŸ”„ Refresh Cache