Udemy - Generative AI and Large Language Models

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 1.7 GB
  • Uploaded By freecoursewb
  • Downloads 626
  • Last checked 7 hours ago
  • Date uploaded 6 months ago
  • Seeders 22
  • Leechers 4

Infohash : 79AD7B3E863CE7C196EEB5DFED83A14DED636788



Generative AI and Large Language Models

https://WebToolTip.com

Published 6/2025
Created by Sujithkumar MA
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 33 Lectures ( 4h 34m ) | Size: 1.67 GB

A beginner-friendly guide to Generative AI and LLMs covering transformer basics, and hands-on python labs

What you'll learn
Understand the Fundamentals of Machine Learning and Generative AI
Gain Practical Knowledge of Large Language Models (LLMs)
Perform Hands-on Tasks Using Python and Hugging Face
Evaluate and Tune LLM Outputs Effectively

Requirements
No programming experience needed

Files:

[ WebToolTip.com ] Udemy - Generative AI and Large Language Models
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction
    • 1 -Introduction.mp4 (59.1 MB)
    • 2 -2. Course Content.mp4 (23.0 MB)
    2 - Introduction to Generative AI
    • 1 -3. What is Generative AI.mp4 (23.7 MB)
    • 2 -4. Example - Difference between GenAI and Discriminative AI.mp4 (25.3 MB)
    • 3 -5. A review on Probability Terms, Bayes theorem.mp4 (94.7 MB)
    • 4 -6. Case Study Introduction - Digit Recognition.mp4 (15.4 MB)
    • 5 -7. Case Study Introduction - Digit Recognition (Contd.).mp4 (40.7 MB)
    • 6 -8. Summary on GenAI.mp4 (39.4 MB)
    3 - Introduction to Large Language Models
    • 1 -9. Introduction to LLMs.mp4 (12.6 MB)
    • 2 -10. Understanding language is not easy.mp4 (13.2 MB)
    • 3 -11. LLM Demo.mp4 (17.3 MB)
    • 4 -12. What does an LLM do.mp4 (18.7 MB)
    • 5 -13. Applications of an LLM.mp4 (4.4 MB)
    4 - Core Architecture of LLM and Neural Networks Basics
    • 1 -14. Introduction to the architecture used in LLM.mp4 (36.9 MB)
    • 2 -15. Fully Connected Networks.mp4 (133.0 MB)
    • 3 -16. Neural Networks are Function Approximators.mp4 (62.7 MB)
    • 4 -17. Introduction to RNN.mp4 (55.1 MB)
    • 5 -18. RNN - A deep dive.mp4 (70.4 MB)
    • 6 -18.1 - Pretraining vs Finetuning.mp4 (55.7 MB)
    5 - Transformers and Core Mechanisms
    • 1 -19. Introduction to Transformers - Tokenization.mp4 (39.1 MB)
    • 2 -20. Python demo on Tokenization.mp4 (36.4 MB)
    • 3 -21. Embedding - Words in the vector space.mp4 (97.4 MB)
    • 4 -22. Overview on the working of the Encoder-Decoder.mp4 (83.4 MB)
    • 5 -23. Self Attention - Full Explanation on the QKV Matrix.mp4 (118.6 MB)
    • 6 -24. Embedding - Demo.mp4 (50.7 MB)
    6 - Practical Applications and Labs
    • 1 -25. Lab 1 - Building a chabot using Huggingface.mp4 (92.2 MB)
    • 2 -26. Inferencing Parameters - top p, top k, temperature.mp4 (57.6 MB)
    • 3 -27. Demo on Inferencing Parameters.mp4 (33.2 MB)
    • 4 -28. Lab 2 - Sentiment Analysis.mp4 (66.1 MB)
    • 5 -29. Lab 3 - Building a simple translator.mp4 (45.1 MB)
    7 - Evaluation and Advanced Concepts
    • 1 -30. Evaluation Metrics - The BLEU Score.mp4 (75.8 MB)
    • 2 -31. Evaluation Metrics - The ROUGE score.mp4 (35.4 MB)
    • 3 -32. In Context Learning - Zero shot, few shot, One shot Inferences.mp4 (68.7 MB)
    • Bonus Resources.txt (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
R2-CACHE ☁️ R2 (hit) | CDN: HIT (0s) 📄 torrent 🕐 30 Dec 2025, 09:19:56 pm IST ⏰ 24 Jan 2026, 09:19:56 pm IST ✅ Valid for 7d 11h 🔄 Refresh Cache