Udemy - Machine Learning in Bioinformatics - From Theory to Pract...
- Category Other
- Type Tutorials
- Language English
- Total size 2.3 GB
- Uploaded By freecoursewb
- Downloads 178
- Last checked 4 hours ago
- Date uploaded 8 months ago
- Seeders 4
- Leechers 1
Infohash : 5B5FFD02FD4C27E5052A2EE48C96537CAEAE0FF3
Machine Learning in Bioinformatics: From Theory to Practical
https://WebToolTip.com
Published 4/2025
Created by Rafiq Ur Rehman
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Beginner | Genre: eLearning | Language: English | Duration: 35 Lectures ( 6h 4m ) | Size: 2.25 GB
Machine Learning for Bioinformatics: Analyze Genomic Data, Predict Disease, and Apply AI to Life Sciences
What you'll learn
Understand key machine learning concepts, including supervised and unsupervised learning.
Learn the differences between classification, regression, clustering, and deep learning in bioinformatics.
Process and analyze different types of biological data, such as genomic sequences, transcriptomics, and proteomics data.
Understand feature engineering and data preprocessing techniques specific to bioinformatics datasets.
Implement essential machine learning algorithms like Random Forest, SVM, k-means clustering, and neural networks in bioinformatics.
Learn dimensionality reduction techniques (e.g., PCA, t-SNE) for high-dimensional biological data.
Work with Scikit-learn, TensorFlow, Biopython, and Pandas to apply ML techniques in bioinformatics.
Develop and optimize machine learning models for gene expression analysis, protein structure prediction, and variant classification.
Apply machine learning to genomic variant classification, drug discovery, personalized medicine, and disease prediction.
Build a machine learning pipeline for predicting gene function and protein interactions.
Evaluate model performance using cross-validation, confusion matrices, ROC curves, and precision-recall metrics.
Fine-tune models using hyperparameter optimization and feature selection.
Understand deep learning architectures like CNNs and RNNs for biological sequence analysis.
Implement deep learning models for protein structure prediction and genome annotation.
Develop machine learning models for bioinformatics research and real-world applications.
Learn how to interpret ML results for biological insights and scientific publications.
Requirements
No Prior Machine Learning Experience Needed!
Familiarity with biological concepts such as DNA, RNA, proteins, and gene expression.
Basic knowledge of bioinformatics file formats (FASTA, FASTQ, CSV, etc.).
Basic understanding of Python syntax, loops, functions, and data structures.
Experience with libraries like NumPy, Pandas, or Matplotlib is a plus, but not required.
Understanding of basic concepts like mean, median, standard deviation, probability, and correlation.
Some familiarity with linear algebra and calculus
Files:
[ FreeCourseWeb.com ] Udemy - Machine Learning in Bioinformatics - From Theory to Practical- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 1 - Introduction
- 1 -Introduction to Machine Learning.mp4 (87.9 MB)
- 2 -Setting up Environment for ML workflowsCode.mp4 (63.8 MB)
- 1 -Capstone Projects.mp4 (42.6 MB)
- 1 -Capstone Projects.pptx (95.3 KB)
- 1 -Data cleaning, preprocessing, and feature engineering.mp4 (73.3 MB)
- 2 -Data Preprocessing Techniques.mp4 (167.1 MB)
- 2 -DataPreprocessing.ipynb (621.4 KB)
- 3 -03_DataVisualization.ipynb (278.3 KB)
- 3 -Data visualizations using python.mp4 (136.2 MB)
- 1 -Introduction to Supervised Machine Learning.mp4 (81.3 MB)
- 10 -Case Study PPI network models.mp4 (64.9 MB)
- 10 -PPI Network.py (4.4 KB)
- 10 -networks.csv (0.2 KB)
- 2 -04_SimpleLinearRegression.ipynb (54.7 KB)
- 2 -Simple Linear Regression.mp4 (84.4 MB)
- 2 -headbrain.csv (3.5 KB)
- 3 -09_Logistic_Regression.ipynb (32.5 KB)
- 3 -Logistic Regression.mp4 (52.7 MB)
- 3 -titanic.csv (105.7 KB)
- 4 -10_K_Nearest_Neighbors.ipynb (39.8 KB)
- 4 -KNN Classifier.mp4 (44.5 MB)
- 4 -credit_data.csv (149.5 KB)
- 5 -11_SupportVectorMachine.ipynb (27.1 KB)
- 5 -SVM.mp4 (45.0 MB)
- 6 -12_Naive_Bayes.ipynb (18.4 KB)
- 6 -Naive bayes classifier.mp4 (28.1 MB)
- 6 -credit_data.csv (149.5 KB)
- 7 -13_Decision_Tree_Classifier.ipynb (1.9 MB)
- 7 -Decision trees.mp4 (46.0 MB)
- 7 -pima-indians-diabetes.csv (23.5 KB)
- 8 -14_Random_Forest_Classification.ipynb (843.3 KB)
- 8 -Random Forest Classifier.mp4 (101.0 MB)
- 8 -mushrooms.csv (373.2 KB)
- 9 -Case Study Cancer Classifier.mp4 (54.4 MB)
- 9 -cancer-classsifier.py (2.5 KB)
- 9 -expression_file.csv (0.5 KB)
- 1 -Introduction to unsupervised learning.mp4 (106.7 MB)
- 2 -Dimensionality Reduction in Bioinformatics.mp4 (44.9 MB)
- 2 -Dimensionality Reduction in Bioinformatics.py (1.3 KB)
- 3 -15_K_Means_Clustering.ipynb (19.1 KB)
- 3 -K-means Clustering.mp4 (60.3 MB)
- 3 -Quotes.csv (1.8 KB)
- 4 -16_DBSCAN_Clustering.ipynb (103.1 KB)
- 4 -DBSCAN.mp4 (55.5 MB)
- 5 -17_Hierarchical_Clustering.ipynb (26.4 KB)
- 5 -Hierarchical Clustering.mp4 (46.8 MB)
- 6 -Case Study Single Cell analysis.mp4 (118.9 MB)
- 6 -immune-cells.csv (0.3 KB)
- 6 -single cell using scanpy.single-cell-using-scanpy (1.1 MB)
- 1 -Introduction and explanation of advance machine learning models.mp4 (52.0 MB)
- 2 -Case Study predicting DNA mutations using RNN.mp4 (55.1 MB)
- 2 -Predicting-Dna-mutations-using-RNN.py (3.0 KB)
- 2 -data.csv (0.2 KB)
- 1 -Genomics Practical Application of ML.mp4 (54.7 MB)
- 1 -V-C Model.py (1.4 KB)
- 2 -ML in Proteomics.mp4 (74.9 MB)
- 2 -aligned_sequences.fasta (0.8 KB)
- 2 -protein_sequences.fasta (0.8 KB)
- 2 -protein_tree.newick (0.1 KB)
- 2 -proteomics.py (5.5 KB)
- 3 -ML in Drug discovery.mp4 (53.6 MB)
- 3 -QSAR-model.py (5.8 KB)
- 3 -drug_target_data.csv (0.2 KB)
- 4 -ML in Metagenomics.mp4 (31.0 MB)
- 4 -file.py (2.4 KB)
- 5 -Summary of ML Applications.mp4 (10.0 MB)
- 1 -Evaluation and Optimization of Machine Learning Models in Bioinformatics.mp4 (49.0 MB)
- 2 -Case Study Breast Cancer Prediction with poor and enhanced recall.mp4 (48.0 MB)
- 2 -case-study.py (4.8 KB)
- 1 -Data Integration and Multi-Omics in Machine Learning for Bioinformatics.mp4 (65.4 MB)
- 2 -Case Study Multi-Omics in Cancer Research.mp4 (47.8 MB)
- 2 -multi-omics-model.py (2.8 KB)
- 1 -Bias and Fairness in ML Models and Case study of Polygenic Risk Scores.mp4 (86.8 MB)
- 1 -PRS-model.py (4.1 KB)
- 2 -Challenges in ML and Case Study of AI in COVID-19 Drug Discovery.mp4 (64.3 MB)
- 2 -Drug-discovery-model.py (2.1 KB)
- Bonus Resources.txt (0.1 KB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce