Machine Learning with R, the tidyverse, and mlr. Video Edition

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 2.4 GB
  • Uploaded By freecoursewb
  • Downloads 170
  • Last checked 2 weeks ago
  • Date uploaded 1 year ago
  • Seeders 7
  • Leechers 4

Infohash : 5E2425CFF95A526DE185B5568636AE783A71E7EE



Machine Learning with R, the tidyverse, and mlr. Video Edition

https://FreeCourseWeb.com

Released 4/2020
By Hefin Rhys
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 15h 49m | Size: 2.37 GB

Machine learning (ML) is a collection of programming techniques for discovering relationships in data. With ML algorithms, you can cluster and classify data for tasks like making recommendations or fraud detection and make predictions for sales trends, risk analysis, and other forecasts

Machine learning (ML) is a collection of programming techniques for discovering relationships in data. With ML algorithms, you can cluster and classify data for tasks like making recommendations or fraud detection and make predictions for sales trends, risk analysis, and other forecasts. Once the domain of academic data scientists, machine learning has become a mainstream business process, and tools like the easy-to-learn R programming language put high-quality data analysis in the hands of any programmer. Machine Learning with R, the tidyverse, and mlr teaches you widely used ML techniques and how to apply them to your own datasets using the R programming language and its powerful ecosystem of tools. This book will get you started!

About the Technology

Files:

[ FreeCourseWeb.com ] Machine Learning with R, the tidyverse, and mlr. Video Edition
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here !
    • Appendix._Central_tendency.mp4 (10.2 MB)
    • Appendix._Distributions.mp4 (9.7 MB)
    • Appendix._Logarithms.mp4 (9.2 MB)
    • Appendix._Measures_of_dispersion.mp4 (21.2 MB)
    • Appendix._Measures_of_the_relationships_between_variables.mp4 (10.7 MB)
    • Appendix._Refresher_on_statistical_concepts.mp4 (17.4 MB)
    • Appendix._Sigma_notation.mp4 (5.3 MB)
    • Appendix.__Vectors.mp4 (5.8 MB)
    • Bonus Resources.txt (0.4 KB)
    • Chapter_1._Classes_of_machine_learning_algorithms.mp4 (40.5 MB)
    • Chapter_1._Introduction_to_machine_learning.mp4 (34.1 MB)
    • Chapter_1._Summary.mp4 (5.4 MB)
    • Chapter_1._Thinking_about_the_ethical_impact_of_machine_learning.mp4 (20.4 MB)
    • Chapter_1._What_will_you_learn_in_this_book.mp4 (2.6 MB)
    • Chapter_1._Which_datasets_will_we_use.mp4 (2.0 MB)
    • Chapter_1._Why_use_R_for_machine_learning.mp4 (8.0 MB)
    • Chapter_10._Building_your_first_GAM.mp4 (19.1 MB)
    • Chapter_10._More_flexibility_Splines_and_generalized_additive_models.mp4 (20.7 MB)
    • Chapter_10._Strengths_and_weaknesses_of_GAMs.mp4 (3.8 MB)
    • Chapter_10._Summary.mp4 (2.6 MB)
    • Chapter_10.__Nonlinear_regression_with_generalized_additive_models.mp4 (18.5 MB)
    • Chapter_11._Benchmarking_ridge,_LASSO,_elastic_net,_and_OLS_against_each_other.mp4 (7.3 MB)
    • Chapter_11._Building_your_first_ridge,_LASSO,_and_elastic_net_models.mp4 (51.4 MB)
    • Chapter_11._Preventing_overfitting_with_ridge_regression,_LASSO,_and_elastic_net.mp4 (7.0 MB)
    • Chapter_11._Strengths_and_weaknesses_of_ridge,_LASSO,_and_elastic_net.mp4 (4.9 MB)
    • Chapter_11._Summary.mp4 (4.8 MB)
    • Chapter_11._What_is_elastic_net.mp4 (11.2 MB)
    • Chapter_11._What_is_ridge_regression.mp4 (18.5 MB)
    • Chapter_11._What_is_the_L1_norm,_and_how_does_LASSO_use_it.mp4 (8.3 MB)
    • Chapter_11._What_is_the_L2_norm,_and_how_does_ridge_regression_use_it.mp4 (18.6 MB)
    • Chapter_12._Benchmarking_the_kNN,_random_forest,_and_XGBoost_model-building_processes.mp4 (4.4 MB)
    • Chapter_12._Building_your_first_XGBoost_regression_model.mp4 (12.2 MB)
    • Chapter_12._Building_your_first_kNN_regression_model.mp4 (32.3 MB)
    • Chapter_12._Building_your_first_random_forest_regression_model.mp4 (9.8 MB)
    • Chapter_12._Regression_with_kNN,_random_forest,_and_XGBoost.mp4 (14.1 MB)
    • Chapter_12._Strengths_and_weaknesses_of_kNN,_random_forest,_and_XGBoost.mp4 (2.5 MB)
    • Chapter_12._Summary.mp4 (3.7 MB)
    • Chapter_12._Using_tree-based_learners_to_predict_a_continuous_variable.mp4 (12.3 MB)
    • Chapter_13._Building_your_first_PCA_model.mp4 (43.6 MB)
    • Chapter_13._Maximizing_variance_with_principal_component_analysis.mp4 (31.4 MB)
    • Chapter_13._Strengths_and_weaknesses_of_PCA.mp4 (2.7 MB)
    • Chapter_13._Summary.mp4 (3.7 MB)
    • Chapter_13._What_is_principal_component_analysis.mp4 (27.5 MB)
    • Chapter_14._Building_your_first_UMAP_model.mp4 (17.4 MB)
    • Chapter_14._Building_your_first_t-SNE_embedding.mp4 (25.2 MB)
    • Chapter_14._Maximizing_similarity_with_t-SNE_and_UMAP.mp4 (35.2 MB)
    • Chapter_14._Strengths_and_weaknesses_of_t-SNE_and_UMAP.mp4 (3.4 MB)
    • Chapter_14._Summary.mp4 (3.2 MB)
    • Chapter_14._What_is_UMAP.mp4 (16.5 MB)
    • Chapter_15._Building_an_LLE_of_our_flea_data.mp4 (5.5 MB)
    • Chapter_15._Building_your_first_LLE.mp4 (19.0 MB)
    • Chapter_15._Building_your_first_SOM.mp4 (61.8 MB)
    • Chapter_15._Self-organizing_maps_and_locally_linear_embedding.mp4 (12.6 MB)
    • Chapter_15._Strengths_and_weaknesses_of_SOMs_and_LLE.mp4 (5.6 MB)
    • Chapter_15._Summary.mp4 (3.9 MB)
    • Chapter_15._What_are_self-organizing_maps.mp4 (31.1 MB)
    • Chapter_15._What_is_locally_linear_embedding.mp4 (11.4 MB)
    • Chapter_16._Building_your_first_k-means_model.mp4 (81.9 MB)
    • Chapter_16._Clustering_by_finding_centers_with_k-means.mp4 (32.8 MB)
    • Chapter_16._Strengths_and_weaknesses_of_k-means_clustering.mp4 (3.4 MB)
    • Chapter_16._Summary.mp4 (2.8 MB)
    • Chapter_17._Building_your_first_agglomerative_hierarchical_clustering_model.mp4 (56.6 MB)
    • Chapter_17._Hierarchical_clustering.mp4 (33.9 MB)
    • Chapter_17._How_stable_are_our_clusters.mp4 (11.5 MB)
    • Chapter_17._Strengths_and_weaknesses_of_hierarchical_clustering.mp4 (6.0 MB)
    • Chapter_17._Summary.mp4 (3.8 MB)
    • Chapter_18._Building_your_first_DBSCAN_model.mp4 (69.8 MB)
    • Chapter_18._Building_your_first_OPTICS_model.mp4 (9.8 MB)
    • Chapter_18._Clustering_based_on_density_DBSCAN_and_OPTICS.mp4 (54.7 MB)
    • Chapter_18._Strengths_and_weaknesses_of_density-based_clustering.mp4 (3.6 MB)
    • Chapter_18._Summary.mp4 (5.0 MB)
    • Chapter_19._Building_your_first_Gaussian_mixture_model_for_clustering.mp4 (20.3 MB)
    • Chapter_19._Clustering_based_on_distributions_with_mixture_modeling.mp4 (44.5 MB)
    • Chapter_19._Strengths_and_weaknesses_of_mixture_model_clustering.mp4 (4.5 MB)
    • Chapter_19._Summary.mp4 (3.7 MB)
    • Chapter_2._Loading_the_tidyverse.mp4 (536.9 KB)
    • Chapter_2._Summary.mp4 (7.5 MB)
    • Chapter_2._Tidying,_manipulating,_and_plotting_data_with_the_tidyverse.mp4 (14.4 MB)
    • Chapter_2._What_the_dplyr_package_is_and_what_it_does.mp4 (19.0 MB)
    • Chapter_2._What_the_ggplot2_package_is_and_what_it_does.mp4 (15.8 MB)
    • Chapter_2._What_the_purrr_package_is_and_what_it_does.mp4 (25.3 MB)
    • Chapter_2._What_the_tibble_package_is_and_what_it_does.mp4 (12.2 MB)
    • Chapter_2._What_the_tidyr_package_is_and_what_it_does.mp4 (7.4 MB)
    • Chapter_20._Final_notes_and_further_reading.mp4 (65.8 MB)
    • Chapter_20._The_last_word.mp4 (1.4 MB)
    • Chapter_20._Where_can_you_go_from_here.mp4 (22.1 MB)
    • Chapter_3._Balancing_two_sources_of_model_error_The_bias-variance_trade-off.mp4 (16.0 MB)
    • Chapter_3._Building_your_first_kNN_model.mp4 (26.0 MB)
    • Chapter_3._Classifying_based_on_similarities_with_k-nearest_neighbors.mp4 (22.8 MB)
    • Chapter_3._Cross-validating_our_kNN_model.mp4 (39.5 MB)
    • Chapter_3._Strengths_and_weaknesses_of_kNN.mp4 (5.5 MB)
    • Chapter_3._Summary.mp4 (9.3 MB)
    • Chapter_3._Tuning_k_to_improve_the_model.mp4 (23.0 MB)
    • Chapter_3._Using_cross-validation_to_tell_if_we_re_overfitting_or_underfitting.mp4 (6.6 MB)
    • Chapter_3._What_algorithms_can_learn,_and_what_they_must_be_told_Parameters-_s_and_hyperparameters.mp4 (10.7 MB)
    • Chapter_4._Building_your_first_logistic_regression_model.mp4 (40.8 MB)
    • Chapter_4._Classifying_based_on_odds_with_logistic_regression.mp4 (55.3 MB)
    • Chapter_4._Cross-validating_the_logistic_regression_model.mp4 (11.4 MB)
    • Chapter_4._Interpreting_the_model_The_odds_ratio.mp4 (11.6 MB)
    • Chapter_4._Strengths_and_weaknesses_of_logistic_regression.mp4 (5.0 MB)
    • Chapter_4._Summary.mp4 (6.8 MB)
    • Chapter_4._Using_our_model_to_make_predictions.mp4 (2.3 MB)
    • Chapter_5._Building_your_first_linear_and_quadratic_discriminant_models.mp4 (21.0 MB)
    • Chapter_5._Classifying_by_maximizing_separation_with_discriminant_analysis.mp4 (56.8 MB)
    • Chapter_5._Strengths_and_weaknesses_of_LDA_and_QDA.mp4 (4.9 MB)
    • Chapter_5._Summary.mp4 (5.5 MB)
    • Chapter_6._Building_your_first_SVM_model.mp4 (33.0 MB)
    • Chapter_6._Building_your_first_naive_Bayes_model.mp4 (17.1 MB)
    • Chapter_6._Classifying_with_naive_Bayes_and_support_vector_machines.mp4 (31.9 MB)
    • Chapter_6._Cross-validating_our_SVM_model.mp4 (7.0 MB)
    • Chapter_6._Strengths_and_weaknesses_of_naive_Bayes.mp4 (2.8 MB)
    • Chapter_6._Strengths_and_weaknesses_of_the_SVM_algorithm.mp4 (3.5 MB)
    • Chapter_6._Summary.mp4 (5.9 MB)
    • Chapter_6._What_is_the_support_vector_machine_(SVM)_algorithm.mp4 (59.4 MB)
    • Chapter_7._Building_your_first_decision_tree_model.mp4 (2.8 MB)
    • Chapter_7._Classifying_with_decision_trees.mp4 (50.2 MB)
    • Chapter_7._Cross-validating_our_decision_tree_model.mp4 (7.3 MB)
    • Chapter_7._Loading_and_exploring_the_zoo_dataset.mp4 (3.1 MB)
    • Chapter_7._Strengths_and_weaknesses_of_tree-based_algorithms.mp4 (1.8 MB)
    • Chapter_7._Summary.mp4 (2.2 MB)
    • Chapter_7._Training_the_decision_tree_model.mp4 (30.0 MB)
    • Chapter_8._Benchmarking_algorithms_against_each_other.mp4 (7.0 MB)
    • Chapter_8._Building_your_first_XGBoost_model.mp4 (21.6 MB)
    • Chapter_8._Building_your_first_random_forest_model.mp4 (12.8 MB)
    • Chapter_8._Improving_decision_trees_with_random_forests_and_boosting.mp4 (59.7 MB)
    • Chapter_8._Strengths_and_weaknesses_of_tree-based_algorithms.mp4 (3.0 MB)
    • Chapter_8._Summary.mp4 (3.4 MB)
    • Chapter_9._Building_your_first_linear_regression_model.mp4 (120.1 MB)
    • Chapter_9._Linear_regression.mp4 (49.1 MB)
    • Chapter_9._Strengths_and_weaknesses_of_linear_regression.mp4 (3.1 MB)
    • Chapter_9._Summary.mp4 (3.9 MB)
    • Part_1._Introduction.mp4 (5.4 MB)
    • Part_2._Classification.mp4 (5.3 MB)
    • Part_3._Regression.mp4 (4.3 MB)
    • Part_4._Dimension_reduction.mp4 (3.6 MB)
    • Part_5._Clustering.mp4 (3.0 MB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
REVERSE-PROXY 🔄 RP (success) | 625ms 📄 torrent 🕐 24 Jan 2026, 07:54:03 am IST ⏰ 18 Feb 2026, 07:54:03 am IST ✅ Valid for 24d 23h 🔄 Wait 10m