Deep Learning and Generative AI - Data Prep, Analysis, and Visual...
- Category Other
- Type Tutorials
- Language English
- Total size 266.9 MB
- Uploaded By freecoursewb
- Downloads 335
- Last checked 16 hours ago
- Date uploaded 1 year ago
- Seeders 11
- Leechers 2
Infohash : 67B6C7FF8BBF438697B5ADD173CBD133BA68FEB2
Deep Learning and Generative AI: Data Prep, Analysis, and Visualization with Python
https://DevCourseWeb.com
Released 10/2024
With Gwendolyn Stripling
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Skill level: Advanced | Genre: eLearning | Language: English + subtitle | Duration: 1h 56m 27s | Size: 267 MB
Learn the knowledge and practical skills needed to effectively utilize deep learning techniques using the Python programming language.
Course details
If youβre looking to keep up with the rapid advancements and applications of deep learning techniques, this course provides a comprehensive guide that can help you stay relevant and competitive in the evolving landscape of AI and data-driven technologies.
Instructor Gwendolyn Stripling shows you how to transform raw data into valuable insights and build the foundation for cutting-edge AI applications. The course focuses on the concepts, with minimal coding required, so even if youβre not an experienced coder, Gwendolyn shows you how to use simple Python code to work with data. Test your learning with a series of challenges, and cap off the course with building and evaluating a predictive and generative model.
Homepage
Files:
[ DevCourseWeb.com ] Deep Learning and Generative AI - Data Prep, Analysis, and Visualization with Python- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 01 - Introduction
- 01 - Leverage generative AI for analytics and insights.mp4 (3.7 MB)
- 01 - Leverage generative AI for analytics and insights.srt (1.1 KB)
- 02 - What you should know.mp4 (2.1 MB)
- 02 - What you should know.srt (1.5 KB)
- 03 - How to use the challenge exercise files.mp4 (6.2 MB)
- 03 - How to use the challenge exercise files.srt (2.9 KB)
- 01 - We live in a data-driven world!.mp4 (9.1 MB)
- 01 - We live in a data-driven world!.srt (5.3 KB)
- 02 - Our use case.mp4 (6.4 MB)
- 02 - Our use case.srt (3.7 KB)
- 03 - Raw data is messy.mp4 (13.4 MB)
- 03 - Raw data is messy.srt (5.8 KB)
- 04 - Role of data in the machine learning workflow.mp4 (3.6 MB)
- 04 - Role of data in the machine learning workflow.srt (2.7 KB)
- 01 - Data with a structure.mp4 (8.2 MB)
- 01 - Data with a structure.srt (6.3 KB)
- 02 - Data without a structure.mp4 (11.8 MB)
- 02 - Data without a structure.srt (7.4 KB)
- 03 - Using simple Python code to check your data.mp4 (4.3 MB)
- 03 - Using simple Python code to check your data.srt (3.5 KB)
- 04 - Python for data preprocessing with Pandas and Matplotlib.mp4 (9.7 MB)
- 04 - Python for data preprocessing with Pandas and Matplotlib.srt (7.5 KB)
- 05 - Challenge Load and check the data using Python.mp4 (5.8 MB)
- 05 - Challenge Load and check the data using Python.srt (3.8 KB)
- 06 - Solution Load and check the data using Python.mp4 (4.8 MB)
- 06 - Solution Load and check the data using Python.srt (2.6 KB)
- 01 - Data preprocessing the telecom dataset.mp4 (13.6 MB)
- 01 - Data preprocessing the telecom dataset.srt (10.1 KB)
- 02 - Introduction to text preprocessing.mp4 (10.6 MB)
- 02 - Introduction to text preprocessing.srt (7.6 KB)
- 03 - Challenge Data preprocessing the telecom dataset.mp4 (3.1 MB)
- 03 - Challenge Data preprocessing the telecom dataset.srt (2.1 KB)
- 04 - Solution Data preprocessing the telecom dataset.mp4 (17.3 MB)
- 04 - Solution Data preprocessing the telecom dataset.srt (9.1 KB)
- 01 - Exploratory data analysis (EDA).mp4 (10.0 MB)
- 01 - Exploratory data analysis (EDA).srt (7.2 KB)
- 02 - Challenge Perform exploratory data analysis.mp4 (4.0 MB)
- 02 - Challenge Perform exploratory data analysis.srt (3.2 KB)
- 03 - Solution Perform exploratory data analysis.mp4 (12.4 MB)
- 03 - Solution Perform exploratory data analysis.srt (7.6 KB)
- 01 - Overview of predictive and generative AI.mp4 (10.6 MB)
- 01 - Overview of predictive and generative AI.srt (6.4 KB)
- 02 - What is deep learning.mp4 (16.4 MB)
- 02 - What is deep learning.srt (7.0 KB)
- 03 - Generative modeling use cases.mp4 (6.7 MB)
- 03 - Generative modeling use cases.srt (5.3 KB)
- 04 - Predictive modeling use cases.mp4 (6.2 MB)
- 04 - Predictive modeling use cases.srt (4.9 KB)
- 01 - Deep learning Predict customer lifetime value.mp4 (9.7 MB)
- 01 - Deep learning Predict customer lifetime value.srt (6.9 KB)
- 02 - Challenge Predict customer lifetime value.mp4 (21.6 MB)
- 02 - Challenge Predict customer lifetime value.srt (10.8 KB)
- 03 - Solution Predict customer lifetime value.mp4 (7.9 MB)
- 03 - Solution Predict customer lifetime value.srt (4.0 KB)
- 01 - Introduction to capstone and use case.mp4 (8.5 MB)
- 01 - Introduction to capstone and use case.srt (5.9 KB)
- 02 - Challenge Predict media channel sales using Keras.mp4 (1.3 MB)
- 02 - Challenge Predict media channel sales using Keras.srt (0.6 KB)
- 03 - Solution Predict media channel sales using Keras.mp4 (3.7 MB)
- 03 - Solution Predict media channel sales using Keras.srt (2.1 KB)
- 04 - Optional challenge Generate sentiments using BERT.mp4 (1.7 MB)
- 04 - Optional challenge Generate sentiments using BERT.srt (1.0 KB)
- 05 - Solution Generate sentiments using BERT.mp4 (9.8 MB)
- 05 - Solution Generate sentiments using BERT.srt (4.7 KB)
- 01 - Next steps.mp4 (2.9 MB)
- 01 - Next steps.srt (2.9 KB)
- Bonus Resources.txt (0.4 KB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce