Oreilly - Machine Learning Engineering in Action, Video Edition

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 2.3 GB
  • Uploaded By freecoursewb
  • Downloads 848
  • Last checked 6 hours ago
  • Date uploaded 1 year ago
  • Seeders 18
  • Leechers 3

Infohash : E0F6455D9089EC6C8F222EA39E23048CBA2E282A



Machine Learning Engineering in Action, Video Edition

https://FreeCourseWeb.com

Released 4/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 14h 54m | Size: 2.34 GB

Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from In Machine Learning Engineering in Action, you will learn

Evaluating data science problems to find the most effective solution
Scoping a machine learning project for usage expectations and budget
Process techniques that minimize wasted effort and speed up production
Assessing a project using standardized prototyping work and statistical validation
Choosing the right technologies and tools for your project
Making your codebase more understandable, maintainable, and testable
Automating your troubleshooting and logging practices

Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you’ll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks.

Files:

[ FreeCourseWeb.com ] Oreilly - Machine Learning Engineering in Action, Video Edition
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here !
    • Appendix_A._Analyzing_decision-tree_complexity.mp4 (20.0 MB)
    • Appendix_A._Big_O(no)_and_how_to_think_about_runtime_performance.mp4 (22.2 MB)
    • Appendix_A._Complexity_by_example.mp4 (34.2 MB)
    • Appendix_A._General_algorithmic_complexity_for_ML.mp4 (18.2 MB)
    • Appendix_B._Containers_to_deal_with_dependency_hell.mp4 (8.7 MB)
    • Appendix_B._Setting_up_a_development_environment (1).mp4 (7.5 MB)
    • Appendix_B._Setting_up_a_development_environment.mp4 (7.1 MB)
    • Bonus Resources.txt (0.4 KB)
    • Chapter_1._Summary.mp4 (2.1 MB)
    • Chapter_1._The_core_tenets_of_ML_engineering.mp4 (61.8 MB)
    • Chapter_1._The_goals_of_ML_engineering.mp4 (6.5 MB)
    • Chapter_1._What_is_a_machine_learning_engineer.mp4 (24.8 MB)
    • Chapter_1.__Hello,_World!__and_printing.mp4.jpg (93.3 KB)
    • Chapter_10._1Naming,_structure,_and_code_architecture.mp4 (26.3 MB)
    • Chapter_10._Blind_to_issues_Eating_exceptions_and_other_bad_practices.mp4 (21.3 MB)
    • Chapter_10._Excessively_nested_logic.mp4 (31.6 MB)
    • Chapter_10._Standards_of_coding_and_creating_maintainable_ML_code.mp4 (12.1 MB)
    • Chapter_10._Summary.mp4 (4.9 MB)
    • Chapter_10._Tuple_unpacking_and_maintainable_alternatives.mp4 (14.2 MB)
    • Chapter_10._Use_of_global_mutable_objects.mp4 (21.7 MB)
    • Chapter_11._Leveraging_AB_testing_for_attribution_calculations.mp4 (58.6 MB)
    • Chapter_11._Model_measurement_and_why_it_s_so_important.mp4 (52.8 MB)
    • Chapter_11._Summary.mp4 (1.4 MB)
    • Chapter_12._Holding_on_to_your_gains_by_watching_for_drift.mp4 (67.8 MB)
    • Chapter_12._Responding_to_drift.mp4 (25.9 MB)
    • Chapter_12._Summary.mp4 (1.3 MB)
    • Chapter_13._Do_you_really_want_to_be_the_canary_Alpha_testing_and_the_dangers_of_the_open_source_coal_mine.mp4 (19.4 MB)
    • Chapter_13._ML_development_hubris.mp4 (54.8 MB)
    • Chapter_13._Premature_generalization,_premature_optimization,_and_other_bad_ways_to_show_how_smart_you_are.mp4 (50.7 MB)
    • Chapter_13._Summary.mp4 (5.0 MB)
    • Chapter_13._Technology-driven_development_vs._solution-driven_development.mp4 (12.8 MB)
    • Chapter_13._Unintentional_obfuscation_Could_you_read_this_if_you_didn_t_write_it.mp4 (74.9 MB)
    • Chapter_14._Avoiding_cargo_cult_ML_behavior.mp4 (28.0 MB)
    • Chapter_14._Keeping_things_as_simple_as_possible.mp4 (20.9 MB)
    • Chapter_14._Monitoring_everything_else_in_the_model_life_cycle.mp4 (16.4 MB)
    • Chapter_14._Monitoring_your_features.mp4 (21.6 MB)
    • Chapter_14._Summary.mp4 (6.2 MB)
    • Chapter_14._Writing_production_code.mp4 (72.1 MB)
    • Chapter_14.__Wireframing_ML_projects.mp4 (27.3 MB)
    • Chapter_15._End_user_vs._internal_use_testing.mp4 (29.3 MB)
    • Chapter_15._Fallbacks_and_cold_starts.mp4 (36.2 MB)
    • Chapter_15._Model_interpretability.mp4 (41.7 MB)
    • Chapter_15._Quality_and_acceptance_testing.mp4 (41.0 MB)
    • Chapter_15._Summary.mp4 (4.2 MB)
    • Chapter_16._Feature_stores.mp4 (33.4 MB)
    • Chapter_16._Prediction_serving_architecture.mp4 (79.7 MB)
    • Chapter_16._Production_infrastructure.mp4 (34.7 MB)
    • Chapter_16._Summary.mp4 (2.5 MB)
    • Chapter_2._Co-opting_principles_of_Agile_software_engineering.mp4 (17.5 MB)
    • Chapter_2._Summary.mp4 (3.4 MB)
    • Chapter_2._The_foundation_of_ML_engineering.mp4 (3.9 MB)
    • Chapter_2._Your_data_science_could_use_some_engineering.mp4 (10.8 MB)
    • Chapter_2.__A_foundation_of_simplicity.mp4 (11.5 MB)
    • Chapter_3._Before_you_model_Planning_and_scoping_a_project.mp4 (110.6 MB)
    • Chapter_3._Summary.mp4 (1.3 MB)
    • Chapter_3.__Experimental_scoping_Setting_expectations_and_boundaries.mp4 (80.9 MB)
    • Chapter_4._Before_you_model_Communication_and_logistics_of_projects.mp4 (131.7 MB)
    • Chapter_4._Don_t_waste_our_time_Meeting_with_cross-functional_teams.mp4 (52.7 MB)
    • Chapter_4._Planning_for_business_rules_chaos.mp4 (19.9 MB)
    • Chapter_4._Setting_limits_on_your_experimentation.mp4 (47.5 MB)
    • Chapter_4._Summary.mp4 (4.5 MB)
    • Chapter_4._Talking_about_results.mp4 (16.9 MB)
    • Chapter_5._Experimentation_in_action_Planning_and_researching_an_ML_project.mp4 (73.2 MB)
    • Chapter_5._Performing_experimental_prep_work.mp4 (76.3 MB)
    • Chapter_5._Summary.mp4 (1.7 MB)
    • Chapter_6._Experimentation_in_action_Testing_and_evaluating_a_project.mp4 (130.2 MB)
    • Chapter_6._Summary.mp4 (1.3 MB)
    • Chapter_6._Whittling_down_the_possibilities.mp4 (34.9 MB)
    • Chapter_7._Choosing_the_right_tech_for_the_platform_and_the_team.mp4 (53.6 MB)
    • Chapter_7._Experimentation_in_action_Moving_from_prototype_to_MVP.mp4 (64.3 MB)
    • Chapter_7._Summary.mp4 (1.7 MB)
    • Chapter_8._Experimentation_in_action_Finalizing_an_MVP_with_MLflow_and_runtime_optimization.mp4 (46.1 MB)
    • Chapter_8._Scalability_and_concurrency.mp4 (18.8 MB)
    • Chapter_8._Summary.mp4 (1.6 MB)
    • Chapter_9._Debugging_walls_of_text.mp4 (10.8 MB)
    • Chapter_9._Designing_modular_ML_code.mp4 (15.4 MB)
    • Chapter_9._Modularity_for_ML_Writing_testable_and_legible_code.mp4 (47.9 MB)
    • Chapter_9._Summary.mp4 (2.6 MB)
    • Chapter_9._Using_test-driven_development_for_ML.mp4 (19.7 MB)
    • Part_1._An_introduction_to_machine_learning_engineering.mp4 (4.7 MB)
    • Part_2._Preparing_for_production_Creating_maintainable_ML.mp4 (4.0 MB)
    • Part_3._Developing_production_machine_learning_code.mp4 (2.3 MB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
REVERSE-PROXY 🔄 RP (success) | 2598ms 📄 torrent 🕐 18 Jan 2026, 08:49:46 pm IST ⏰ 12 Feb 2026, 08:49:46 pm IST ✅ Valid for 24d 23h 🔄 Wait 10m