Linkedin - Full-Stack Deep Learning with Python
- Category Other
- Type Tutorials
- Language English
- Total size 431.1 MB
- Uploaded By freecoursewb
- Downloads 397
- Last checked 1 week ago
- Date uploaded 1 year ago
- Seeders 11
- Leechers 9
Infohash : D9FCDBD577A3E325E97E35C113AA74AD0C683F7F
Full-Stack Deep Learning with Python
https://FreeCourseWeb.com
Released 2/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Skill Level: Advanced | Genre: eLearning | Language: English + srt | Duration: 1h 58 | Size: 268 MB
If you seek a more in-depth understanding of deep learning and Python, this hands-on course can help you. In this course, certified Google cloud architect and data engineer Janani Ravi guides you through the intricacies of full-stack deep learning with Python. After a review of full stack deep learning, MLOps, and MLflow, dive into setting up your environment on Google Colab and running MLflow. Learn how to load and explore a dataset, as well as how to log metrics, parameters, and artifacts. Explore model training, evaluation, and hyperparameter tuning. Plus, go over model deployment and predictions.
Files:
[ FreeCourseWeb.com ] Linkedin - Full-Stack Deep Learning with Python- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 01 - Introduction
- 01 - Full-stack deep learning, MLOps, and MLflow.mp4 (9.8 MB)
- 01 - Full-stack deep learning, MLOps, and MLflow.srt (12.5 KB)
- 02 - Prerequisites.mp4 (898.8 KB)
- 02 - Prerequisites.srt (1.1 KB)
- 01 - Introducing full-stack deep learning.mp4 (7.8 MB)
- 01 - Introducing full-stack deep learning.srt (11.4 KB)
- 02 - Introducing MLOps.mp4 (6.6 MB)
- 02 - Introducing MLOps.srt (7.6 KB)
- 03 - Introducing MLflow.mp4 (6.3 MB)
- 03 - Introducing MLflow.srt (7.9 KB)
- 04 - Setting up the environment on Google Colab.mp4 (13.0 MB)
- 04 - Setting up the environment on Google Colab.srt (9.2 KB)
- 05 - Running MLflow and using ngrok to access the MLflow UI.mp4 (10.3 MB)
- 05 - Running MLflow and using ngrok to access the MLflow UI.srt (9.7 KB)
- 01 - Loading and exploring the EMNIST dataset.mp4 (9.9 MB)
- 01 - Loading and exploring the EMNIST dataset.srt (8.8 KB)
- 02 - Logging metrics, parameters, and artifacts in MLflow.mp4 (11.0 MB)
- 02 - Logging metrics, parameters, and artifacts in MLflow.srt (11.0 KB)
- 03 - Set up the dataset and data loader.mp4 (6.9 MB)
- 03 - Set up the dataset and data loader.srt (6.4 KB)
- 04 - Configuring the image classification DNN model.mp4 (10.5 MB)
- 04 - Configuring the image classification DNN model.srt (8.7 KB)
- 05 - Training a model within an MLflow run.mp4 (11.1 MB)
- 05 - Training a model within an MLflow run.srt (7.0 KB)
- 06 - Exploring parameters and metrics in MLflow.mp4 (9.0 MB)
- 06 - Exploring parameters and metrics in MLflow.srt (7.9 KB)
- 07 - Making predictions using MLflow artifacts.mp4 (11.4 MB)
- 07 - Making predictions using MLflow artifacts.srt (8.8 KB)
- 01 - Preparing data for image classification using CNN.mp4 (9.7 MB)
- 01 - Preparing data for image classification using CNN.srt (6.9 KB)
- 02 - Configuring and training the model using MLflow runs.mp4 (15.5 MB)
- 02 - Configuring and training the model using MLflow runs.srt (10.9 KB)
- 03 - Visualizing charts, metrics, and parameters on MLflow.mp4 (15.2 MB)
- 03 - Visualizing charts, metrics, and parameters on MLflow.srt (12.0 KB)
- 04 - Setting up the objective function for hyperparameter tuning.mp4 (12.4 MB)
- 04 - Setting up the objective function for hyperparameter tuning.srt (9.8 KB)
- 05 - Hyperparameter optimization with Hyperopt and MLflow.mp4 (13.9 MB)
- 05 - Hyperparameter optimization with Hyperopt and MLflow.srt (11.7 KB)
- 06 - Identifying the best model.mp4 (7.8 MB)
- 06 - Identifying the best model.srt (6.0 KB)
- 07 - Registering a model with the MLflow registry.mp4 (5.7 MB)
- 07 - Registering a model with the MLflow registry.srt (6.0 KB)
- 01 - Setting up MLflow on the local machine.mp4 (8.2 MB)
- 01 - Setting up MLflow on the local machine.srt (8.4 KB)
- 02 - Workaround to get model artifacts on the local machine.mp4 (4.3 MB)
- 02 - Workaround to get model artifacts on the local machine.srt (3.9 KB)
- 03 - Deploying and serving the model locally.mp4 (13.8 MB)
- 03 - Deploying and serving the model locally.srt (10.6 KB)
- 01 - Summary and next steps.mp4 (2.5 MB)
- 01 - Summary and next steps.srt (3.2 KB)
- Bonus Resources.txt (0.4 KB) Ex_Files_Full_Stack_Deep_Learning_Python Exercise Files final_code datasets
- emnist-letters-test.csv (27.3 MB)
- emnist-letters-train.csv (163.7 MB)
- demo_01_EMNISTClassificationUsingDNN.ipynb (1.7 MB)
- demo_02_EMNISTClassificationUsingCNN.ipynb (3.1 MB)
- demo_03_ModelDeployment.ipynb (37.7 KB) ipynb_checkpoints
- demo_01_EMNISTClassificationUsingDNN-checkpoint.ipynb (1.7 MB)
- demo_03_ModelDeployment-checkpoint.ipynb (46.3 KB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce