Udemy - Machine Learning Foundation With Practical Approaches

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 3.9 GB
  • Uploaded By freecoursewb
  • Downloads 268
  • Last checked 1 month ago
  • Date uploaded 2 years ago
  • Seeders 13
  • Leechers 6

Infohash : 2668980FE74E9A152B3BBA202D23415C0A047F01



Machine Learning Foundation With Practical Approaches



https://DevCourseWeb.com

Published 8/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 3.94 GB | Duration: 10h 7m

This course have been created keeping in mind to deliver the foundation of ML to students, working professionals.

What you'll learn
One of the best slides and learning material from scratch for Learners.
Learn very basics to pro level in machine learning.
Learn the practical application which they can use with ML.
Identify what strategy they can use to solve a given ML problem.
Drive a given ML projects and have great understanding about end to end ML approaches.

Requirements
Simple basic Python programming.
Eager to learn and explore.

Files:

[ DevCourseWeb.com ] Udemy - Machine Learning Foundation With Practical Approaches
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1 - Introduction
    • 1 - Introduction.pptx (3.7 MB)
    • 1 - ML-Course-2023.odp (602.7 KB)
    • 1 - MLIntroduction.mp4 (408.7 MB)
    • 2 - Setup our Environment.mp4 (37.2 MB)
    • ML-Course-Notebooks Section 2 Statistics and mathematics Basic Statistics
      • Basic stats.ipynb (483.5 KB)
      • cars_data.csv (80.4 KB)
      Mathematics
      • Mathematics.ipynb (13.1 KB)
      Section 3 Processing Data Proprocessing
      • Data Preprocessing.ipynb (293.7 KB)
      • loans-data.csv (22.8 KB)
      Feature Engineering
      • feature_engineering.ipynb (75.6 KB)
      • iris.csv (3.8 KB)
      Section 4 Regression Algorithm discussion
      • Regression Algorithm.ipynb (138.4 KB)
      • housing-price.csv (142.4 KB)
      Evaluation
      • Evaluation.ipynb (52.2 KB)
      • housing-price-clean.csv (227.3 KB)
      Section 5 Classification Algorithm discussion
      • Algorithm Analysis.ipynb (596.0 KB)
      Evaluation
      • Evaluation.ipynb (30.0 KB)
      Section 6 Unsupervised Learning Algorithm discussion
      • Algorithm-Unsupervised.ipynb (406.1 KB)
      • Mall_Customers.csv (4.2 KB)
      Section 7 Time series modelling Algorithm discussion
      • Time series.ipynb (733.0 KB)
      • international-airline-passengers.csv (2.0 KB)
      Section 8 Ensemble Learning Algorithm discussion
      • Ensemble Learning.ipynb (4.6 KB)
      • requirements.txt (0.2 KB)
      • 2 - Statistics and mathematics
        • 3 - Introduction.mp4 (13.1 MB)
        • 3 - Statistics-and-maths-introduction.pptx (738.8 KB)
        • 4 - Basic-Statistics.pptx (1.5 MB)
        • 4 - Statistics Concepts.mp4 (244.7 MB)
        • 5 - Statistics hands on.mp4 (252.4 MB)
        • 6 - Mathematics Concepts in ML.mp4 (99.1 MB)
        • 6 - Mathematics.pptx (796.8 KB)
        • 7 - Mathematics Hands on Demo.mp4 (77.3 MB)
        3 - Data Preprocessing
        • 8 - Data Preprocessing Concepts.mp4 (58.8 MB)
        • 8 - Data-Preprocessing.pptx (1.5 MB)
        • 9 - Data Preprocessing Hand on.mp4 (283.3 MB)
        4 - Feature Engineering
        • 10 - Feature Engineering Concepts.mp4 (91.4 MB)
        • 10 - Feature-engineering.pptx (902.6 KB)
        • 11 - Feature Engineering Hands on.mp4 (94.5 MB)
        5 - Regression
        • 12 - Introduction.mp4 (47.7 MB)
        • 12 - Introduction.pptx (614.5 KB)
        • 13 - Algorithm Discussions Concepts.mp4 (52.4 MB)
        • 13 - Algorithm-Discussion.pptx (844.1 KB)
        • 14 - Algorithm Discussions Hands On.mp4 (239.8 MB)
        • 15 - Regression Evaluation Technique concepts.mp4 (49.2 MB)
        • 15 - Regression-Evaluation.pptx (611.1 KB)
        • 16 - Regression Evaluation Technique Hands On.mp4 (162.4 MB)
        6 - Classification Algorithms
        • 17 - Introduction.mp4 (32.0 MB)
        • 17 - Introduction.pptx (740.9 KB)
        • 18 - Algorithm discussion Concepts.mp4 (208.5 MB)
        • 18 - Algorithm-discussion.pptx (950.6 KB)
        • 19 - Algorithm Discussion Hands on.mp4 (355.4 MB)
        • 20 - Algorithm-discussion.pptx (950.6 KB)
        • 20 - Classification Evaluation Technique Concepts.mp4 (81.3 MB)
        • 21 - Classification Evaluation Technique Hands on.mp4 (141.7 MB)
        7 - Unsupervised Learning
        • 22 - Introduction.mp4 (26.4 MB)
        • 22 - Introduction.pptx (924.1 KB)
        • 23 - Algorithm Discussion Concepts.mp4 (47.7 MB)
        • 23 - Algorithm-discussion.pptx (661.5 KB)
        • 24 - Algorithm Discussion Hands on.mp4 (321.2 MB)
        8 - Time series Modelling concepts
        • 25 - Introduction.mp4 (12.3 MB)
        • 25 - Introduction.pptx (676.9 KB)
        • 26 - Algorithm Discussion Concepts.mp4 (52.8 MB)
        • 26 - Algorithm-Discussion.pptx (667.0 KB)
        • 27 - Algorithm Discussion Hands on.mp4 (266.0 MB)
        9 - Ensemble Learning
        • 28 - Introduction.mp4 (62.3 MB)
        • 28 - Introduction.pptx (909.9 KB)
        • 29 - Algorithm Discussions and Concepts.mp4 (98.6 MB)
        • 29 - Algorithm-discussion.pptx (767.8 KB)
        • 30 - Algorithm Discussion hands on.mp4 (97.6 MB)
        • Bonus Resources.txt (0.4 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
REVERSE-PROXY 🔄 RP (success) | 1512ms 📄 torrent 🕐 19 Jan 2026, 08:23:34 am IST ⏰ 13 Feb 2026, 08:23:34 am IST ✅ Valid for 24d 23h 🔄 Wait 10m