Udemy - Machine Learning Essentials (2023) - Master core ML conce...

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 15.9 GB
  • Uploaded By fcs0310
  • Downloads 730
  • Last checked 2 days ago
  • Date uploaded 2 years ago
  • Seeders 16
  • Leechers 21

Infohash : DFF3F9FA09449DC2C837C358F8DEBB0414345AFB



TO GET DIRECT DOWNLOAD LINKS OR GOOGLE DRIVE LINKS VISIT OUR WEBSITE
FOR MORE PREMIUM UDEMY COURSES VISIT: https://freecoursesite.com

Udemy - Machine Learning Essentials (2023) - Master core ML concepts

Kickstart Machine Learning, understand maths behind essential algorithms, implement them in python & build 8+ projects!

Created by Mohit Uniyal, Prateek Narang
Last updated 5/2023
English
English [Auto]

Files:

[FreeCourseSite.com] Udemy - Machine Learning Essentials (2023) - Master core ML concepts 0. Websites you may like
  • [CourseClub.Me].url (0.1 KB)
  • [FreeCourseSite.com].url (0.1 KB)
  • [GigaCourse.Com].url (0.0 KB)
1. Introduction
  • 1. Course Overview.mp4 (49.6 MB)
  • 10. Code Repository.html (0.2 KB)
  • 2. Artificial Intelligence.mp4 (48.6 MB)
  • 3. Machine Learning.mp4 (67.0 MB)
  • 4. Deep Learning.mp4 (54.5 MB)
  • 5. Computer Vision.mp4 (43.1 MB)
  • 6. Natural Language Processing.mp4 (64.4 MB)
  • 7. Automatic Speech Recognition.mp4 (100.7 MB)
  • 8. Reinforcement Learning.mp4 (43.9 MB)
  • 9. Pre-requisites.html (0.9 KB)
10. K-Means 0. Websites you may like
  • [CourseClub.Me].url (0.1 KB)
  • [FreeCourseSite.com].url (0.1 KB)
  • [GigaCourse.Com].url (0.0 KB)
  • 1. K-Means Algorithm.mp4 (60.1 MB)
  • 2. Code 01 - Data Prep.mp4 (18.6 MB)
  • 3. Code 02 - Init Centers.mp4 (65.7 MB)
  • 4. Code 03 - Assigning Points.mp4 (75.6 MB)
  • 5. Code 04 - Updating Centroids.mp4 (59.1 MB)
  • 6. Code 05 - Visualizing K-Means & Results.mp4 (81.8 MB)
  • 11. Project - Dominant Color Extraction
    • 1. Introduction.mp4 (25.1 MB)
    • 2. Reading Images.mp4 (24.2 MB)
    • 3. Finding Clusters.mp4 (53.9 MB)
    • 4. Dominant Color Swatches.mp4 (39.7 MB)
    • 5. Image in K-Colors.mp4 (71.0 MB)
    12. Naive Bayes Algorithm
    • 1. Bayes Theorem.mp4 (87.3 MB)
    • 10. CODE - Likelihood.mp4 (166.5 MB)
    • 11. CODE - Prediction.mp4 (71.4 MB)
    • 12. Implementing Naive Bayes - Sklearn.mp4 (111.5 MB)
    • 2. Derivation of Bayes Theorem.mp4 (74.8 MB)
    • 3. Bayes Theorem Question.mp4 (145.0 MB)
    • 4. Naive Bayes Algorithm.mp4 (80.7 MB)
    • 5. Naive Bayes for Text Classification.mp4 (160.7 MB)
    • 6. Computing Likelihood.mp4 (193.2 MB)
    • 7. Understanding Golf Dataset.mp4 (218.7 MB)
    • 7.1 golf.csv (0.4 KB)
    • 8. CODE - Prior Probability.mp4 (61.1 MB)
    • 9. CODE - Conditional Probability.mp4 (108.1 MB)
    13. Multinomial Naive Bayes
    • 1. Multinomial Naive Bayes.mp4 (141.1 MB)
    • 2. Laplace Smoothing.mp4 (91.5 MB)
    • 3. Multinomial Naive Bayes Example.mp4 (179.2 MB)
    • 4. Bernoulli Naive Bayes.mp4 (204.7 MB)
    • 5. Bernoulli Naive Bayes Example.mp4 (138.3 MB)
    • 6. Bias Variance Tradeoff.mp4 (94.4 MB)
    • 7. Gaussian Naive Bayes.mp4 (109.3 MB)
    • 8. CODE - Variants of Naive Bayes.mp4 (93.9 MB)
    14. PROJECT Spam Classifier
    • 1. Project Overview.mp4 (87.4 MB)
    • 2. Data Clearning.mp4 (157.9 MB)
    • 3. WordCloud.mp4 (106.2 MB)
    • 4. Text Featurization.mp4 (44.2 MB)
    • 5. Model Building.mp4 (52.1 MB)
    • 6. Model Evaluation.mp4 (67.9 MB)
    15. Decision Trees 0. Websites you may like
    • [CourseClub.Me].url (0.1 KB)
    • [FreeCourseSite.com].url (0.1 KB)
    • [GigaCourse.Com].url (0.0 KB)
    • 1. Decision Trees Introduction.mp4 (78.0 MB)
    • 2. Decision Trees Example.mp4 (137.4 MB)
    • 3. Entropy.mp4 (118.4 MB)
    • 4. CODE Entropy.mp4 (70.1 MB)
    • 5. Information Gain.mp4 (199.5 MB)
    • 6. CODE Split Data.mp4 (135.8 MB)
    • 7. CODE Information Gain.mp4 (93.8 MB)
    • 8. Construction of Decision Trees.mp4 (66.4 MB)
    • 9. Stopping Conditions.mp4 (98.3 MB)
    • 16. Decision Trees Implementation
      • 1. CODE - Decision Tree Node.mp4 (61.2 MB)
      • 10. Decision Trees for Regression.mp4 (89.5 MB)
      • 11. Decision Tree Code - Sklearn.mp4 (36.7 MB)
      • 2. CODE - Train Decision Tree.mp4 (119.7 MB)
      • 3. CODE - Assign Target Variable to Each Node.mp4 (59.9 MB)
      • 4. CODE - Stopping Conditions.mp4 (72.4 MB)
      • 5. CODE - Train Child Nodes.mp4 (83.4 MB)
      • 6. CODE - Explore Decision Tree Model.mp4 (102.3 MB)
      • 7. CODE - Prediction.mp4 (116.4 MB)
      • 8. Handling Numeric Features.mp4 (110.0 MB)
      • 9. Bias Variance Tradeoff.mp4 (58.9 MB)
      17. PROJECT Titanic Survival Prediction
      • 1. Project Overview.mp4 (100.8 MB)
      • 1.1 titanic_train.csv (58.9 KB)
      • 2. Exploratory Data Analysis.mp4 (83.8 MB)
      • 3. Exploratory Data Analysis - II.mp4 (79.0 MB)
      • 4. Data Preparation for ML Model.mp4 (83.4 MB)
      • 5. Handling Missing Values.mp4 (94.8 MB)
      • 6. Decision Tree Model Building.mp4 (77.8 MB)
      • 7. Visualize Decision Tree.mp4 (92.6 MB)
      18. Ensemble Learning Bagging
      • 1. Ensemble Learning.mp4 (69.3 MB)
      • 2. Bagging Model.mp4 (128.8 MB)
      • 3. Why Bagging Helps.mp4 (142.6 MB)
      • 4. Random Forest Algorithm.mp4 (118.1 MB)
      • 5. Bias Variance Tradeoff.mp4 (127.4 MB)
      • 6. CODE Random Forest.mp4 (115.6 MB)
      19. Ensemble Learning Boosting
      • 1. Boosting Introduction.mp4 (120.4 MB)
      • 2. Boosting Intuition.mp4 (133.5 MB)
      • 3. Boosting Mathematical Formulation.mp4 (211.5 MB)
      • 4. Concept of Pseudo Residuals.mp4 (152.8 MB)
      • 5. GBDT Algorithm.mp4 (245.2 MB)
      • 6. Bias Variance Tradeoff.mp4 (83.4 MB)
      • 7. CODE - Gradient Boosting Decision Trees.mp4 (131.6 MB)
      • 8. XGBoost.mp4 (119.3 MB)
      • 9. Adaptive Boosting (AdaBoost).mp4 (118.9 MB)
      2. Supervised vs Unsupervised Learning
      • 1. Supervised Learning Introduction.mp4 (78.3 MB)
      • 2. Supervised Learning Example.mp4 (198.1 MB)
      • 3. Unsupervised Learning.mp4 (94.0 MB)
      20. PROJECT Customer Churn Prediction
      • 1. Project Overview.mp4 (122.4 MB)
      • 2. Exploratory Data Analysis.mp4 (103.3 MB)
      • 3. Data Visualisation.mp4 (52.5 MB)
      • 4. Finding relations.mp4 (67.5 MB)
      • 5. Data Preparation.mp4 (61.3 MB)
      • 6. Model Building.mp4 (74.6 MB)
      • 7. Hyperparameter tuning.mp4 (101.2 MB)
      21. Deep Learning Introduction - Neural Network
      • 1. Biological Neural Network.mp4 (28.4 MB)
      • 10. CODE - Model Building.mp4 (45.8 MB)
      • 11. CODE - Model Training and Testing.mp4 (85.0 MB)
      • 2. A Neuron.mp4 (34.1 MB)
      • 3. How does a perceptron Learns.mp4 (42.8 MB)
      • 4. Gradient Descent Updates.mp4 (52.8 MB)
      • 5. Neural Networks.mp4 (58.0 MB)
      • 6. 3 Layer NN.mp4 (28.0 MB)
      • 7. Why Neural Nets.mp4 (49.9 MB)
      • 8. Tensorflow Playground.mp4 (88.7 MB)
      • 9. CODE -Data Preparation.mp4 (43.8 MB)
      22. PROJECT Pokemon Image Classification
      • 1. Introduction.mp4 (35.8 MB)
      • 1.1 Dataset Link.html (0.1 KB)
      • 10. Predictions.mp4 (30.2 MB)
      • 2. The Data.mp4 (48.6 MB)
      • 3. Structured Data.mp4 (31.9 MB)
      • 4. Data Loading.mp4 (42.8 MB)
      • 5. Data Preprocessing.mp4 (50.3 MB)
      • 6. Model Architecture.mp4 (33.2 MB)
      • 7. Softmax Function.mp4 (18.4 MB)
      • 8. Model Training.mp4 (17.3 MB)
      • 9. Model evaluation.mp4 (50.2 MB)
      3. Linear Regression
      • 1. Introduction to Linear Regression.mp4 (26.6 MB)
      • 10. Code 01 - Data Generation.mp4 (68.2 MB)
      • 11. Code 02 - Data Normalisation.mp4 (170.9 MB)
      • 12. Code 03 - Train Test Split.mp4 (89.3 MB)
      • 13. Code 04 - Modelling.mp4 (118.1 MB)
      • 14. Code 05 - Predictions.mp4 (54.1 MB)
      • 15. R2 Score.mp4 (139.3 MB)
      • 16. Code 06 - Evaluation.mp4 (28.8 MB)
      • 17. Code 07 - Visualisation.mp4 (103.4 MB)
      • 18. Code 08 - Trajectory [Optional].mp4 (93.9 MB)
      • 2. Notation.mp4 (171.4 MB)
      • 3. Hypothesis.mp4 (95.1 MB)
      • 4. Loss Error Function.mp4 (195.4 MB)
      • 5. Training Idea.mp4 (48.3 MB)
      • 6. Gradient Descent Optimisation.mp4 (110.4 MB)
      • 7. Gradient Descent Code.mp4 (271.3 MB)
      • 8. Gradient Descent - for Linear Regression.mp4 (51.8 MB)
      • 9. The Math of Training.mp4 (105.3 MB)
      4. Linear Regression - Multiple Features 0. Websites you may like
      • [CourseClub.Me].url (0.1 KB)
      • [FreeCourseSite.com].url (0.1 KB)
      • [GigaCourse.Com].url (0.0 KB)
      • 1. Introduction.mp4 (88.2 MB)
      • 10. A Note about Shapes.mp4 (30.1 MB)
      • 11. Code 06 - Evaluation.mp4 (50.9 MB)
      • 12. Linear Regression using Sk-Learn.mp4 (35.4 MB)
      • 2. Hypothesis.mp4 (28.8 MB)
      • 3. Loss Function.mp4 (33.2 MB)
      • 4. Training & Gradient Updates.mp4 (43.3 MB)
      • 5. Code 01 - Data Prep.mp4 (104.3 MB)
      • 6. Code 02 - Hypothesis.mp4 (78.5 MB)
      • 7. Code 03 - Loss Function.mp4 (22.5 MB)
      • 8. Code 04 - Gradient Computation.mp4 (222.3 MB)
      • 9. Code 05 - Training Loop.mp4 (86.7 MB)
      • 5. Logistic Regression
        • 1. Binary Classification Introduction.mp4 (85.5 MB)
        • 10. Code 05 - Training Loop.mp4 (61.6 MB)
        • 11. Code 06 - Visualise Decision Boundary.mp4 (43.1 MB)
        • 12. Code 07 - Predictions & Accuracy.mp4 (55.5 MB)
        • 13. Logistic Regression using Sk-Learn.mp4 (29.5 MB)
        • 14. Multiclass Classification One Vs Rest.mp4 (72.4 MB)
        • 15. Multiclass Classification One Vs One.mp4 (33.5 MB)
        • 2. Notation.mp4 (105.3 MB)
        • 3. Hypothesis Function.mp4 (272.3 MB)
        • 4. Binary Cross-Entropy Loss Function.mp4 (90.8 MB)
        • 5. Gradient Update Rule.mp4 (146.6 MB)
        • 6. Code 01 - Data Prep.mp4 (79.9 MB)
        • 7. Code 02 - Hypothesis Logit Model.mp4 (34.1 MB)
        • 8. Code 03 - Binary Cross Entropy Loss.mp4 (19.4 MB)
        • 9. Code 04 - Gradient Computation.mp4 (45.2 MB)
        6. Dimensionality Reduction Feature Selection
        • 1. Curse of Dimensionality.mp4 (17.0 MB)
        • 2. Feature Selection Vs. Feature Extraction.mp4 (15.1 MB)
        • 3. Filter Method.mp4 (23.5 MB)
        • 4. Wrapper Method.mp4 (23.0 MB)
        • 5. Embedded Method.mp4 (12.8 MB)
        • 6. Feature Selection - Code.mp4 (63.6 MB)
        • 6.1 train.csv (119.5 KB)
        7. Principal Component Analysis (PCA)
        • 1. Introduction to PCA.mp4 (63.4 MB)
        • 2. Conceptual Overview of PCA.mp4 (140.9 MB)
        • 3. Maximising Variance.mp4 (178.0 MB)
        • 4. Minimising Distances.mp4 (95.3 MB)
        • 5. Eigen Values & Eigen Vectors.mp4 (48.5 MB)
        • 6. PCA Summary.mp4 (18.3 MB)
        • 7. Understanding Eigen Values.mp4 (44.6 MB)
        • 8. PCA Code.mp4 (50.6 MB)
        • 9. Choosing the right dimensions.mp4 (45.4 MB)
        8. K-Nearest Neigbours
        • 1. Introduction.mp4 (45.0 MB)
        • 2. KNN Idea.mp4 (34.5 MB)
        • 3. KNN Data Prep.mp4 (29.2 MB)
        • 4. KNN Algorithm Code.mp4 (90.8 MB)
        • 5. Euclidean and Manhattan Distance.mp4 (14.9 MB)
        • 6. Deciding value of K.mp4 (6.8 MB)
        • 7. KNN and Data Standardisation.mp4 (15.2 MB)
        • 8. KNN Pros and Cons.mp4 (53.8 MB)
        • 9. KNN using Sk-Learn.html (0.4 KB)
        9. PROJECT - Face Recognition
        • 1. OpenCV - Working with Images.mp4 (34.0 MB)
        • 2. OpenCV - Video Input from WebCam.mp4 (34.2 MB)
        • 3. Object Detection using Haarcascades.mp4 (79.6 MB)
        • 4. Face Detection in Images.mp4 (78.7 MB)
        • 5. Face Detection in Live Video.mp4 (49.3 MB)
        • 6. Face Recognition Project Intro.mp4 (15.2 MB)
        • 7. Face Recognition 01 - Data Collection.mp4 (198.0 MB)
        • 8. Face Recognition 02 - Loading Data.mp4 (71.7 MB)
        • 9. Face Recognition 03 - Predictions using KNN.mp4 (99.6 MB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.leechers-paradise.org:6969/announce
  • udp://tracker.coppersurfer.tk:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://tracker.zer0day.to:1337/announce
  • udp://eddie4.nl:6969/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • udp://fasttracker.foreverpirates.co:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://explodie.org:6969/announce
  • udp://open.stealth.si:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://tracker.uw0.xyz:6969/announce
  • udp://tracker.dler.org:6969/announce
  • udp://9.rarbg.to:2710/announce
  • udp://tracker.bitsearch.to:1337/announce
  • udp://tracker.altrosky.nl:6969/announce
  • udp://ben.kerbertools.xyz:6969/announce
  • udp://transkaroo.joustasie.net:6969/announce
  • udp://aarsen.me:6969/announce
R2-CACHE ☁️ R2 (hit) | CDN: REVALIDATED (0s) 📄 torrent 🕐 03 Jan 2026, 01:14:29 am IST ⏰ 28 Jan 2026, 01:14:27 am IST ✅ Valid for 11d 7h 🔄 Refresh Cache