Principal Component Analysis and Randomness Test for Big Data Ana...

  • Category Other
  • Type E-Books
  • Language English
  • Total size 5.5 MB
  • Uploaded By freecoursewb
  • Downloads 74
  • Last checked 1 month ago
  • Date uploaded 2 years ago
  • Seeders 4
  • Leechers 0

Infohash : 4C237146B6058919EDEAF7015267962C109D26B0



Principal Component Analysis and Randomness Test for Big Data Analysis



https://DevCourseWeb.com

English | 2023 | ISBN: 9811939667 | 153 Pages | PDF (True) | 6 MB

This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

Files:

[ DevCourseWeb.com ] Principal Component Analysis and Randomness Test for Big Data Analysis
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here !
    • 9811939667.pdf (5.5 MB)
    • Bonus Resources.txt (0.4 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce
REVERSE-PROXY 🔄 RP (success) | 2726ms 📄 torrent 🕐 17 Jan 2026, 08:43:03 am IST ⏰ 11 Feb 2026, 08:43:03 am IST ✅ Valid for 24d 23h 🔄 Wait 10m