Udemy - Machine Learning and Artificial Intelligence in Power BI
- Category Other
- Type Tutorials
- Language English
- Total size 1.6 GB
- Uploaded By freecoursewb
- Downloads 419
- Last checked 11 hours ago
- Date uploaded 2 years ago
- Seeders 8
- Leechers 2
Infohash : 92DE4E87C78E7822106510B5111F7F78632CFFB2
Machine Learning and Artificial Intelligence in Power BI 
https://DevCourseWeb.com
Published 1/2023
Created by Data Bootcamp
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 57 Lectures ( 4h 23m ) | Size: 1.55 GB
Learn how to integrate Machine Learning and AI in Power BI with hands-on projects and professional Power BI instructors
What you'll learn
Machine Learning in Power Bi
Artificial intelligence in Power BI
Advanced analytics
Data analytics
Requirements
No
Files:
[ DevCourseWeb.com ] Udemy - Machine Learning and Artificial Intelligence in Power BI- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 1. Introduction to this course
- 1. Course Material.html (0.1 KB) Material Artificial Intelligence Charts Exercises
- Exercises_Supply Chain.pbix (1.0 MB) Solution
- Exercises_Solution_Supply Chain.pbix (1.0 MB)
- Backorden Percentage.csv (27.0 KB)
- Explanations.csv (1.0 KB)
- Month.csv (0.1 KB)
- Risk.csv (972.0 KB)
- Sales.csv (60.0 KB)
- Supply Analytics.csv (1.3 MB)
- Exercises_Artificial Intelligence Charts.pdf (181.1 KB)
- Sales Analytics.pbix (2.0 MB) Data Analytics with Python in Power BI
- Data Analytics with Seaborn.ipynb (1,020.6 KB)
- Data analytics with Python.pbix (1.6 MB) Data
- Pokemon.csv (43.0 KB)
- insurance.csv (54.3 KB)
- Use Case_Boston Houses.pbix (1.1 MB) Introduction to Power BI
- Dashboard_Retail.pbix (857.9 KB) Data
- Channel.csv (0.1 KB)
- District.csv (0.3 KB)
- Item.csv (1.3 MB)
- Sales.csv (1.6 MB)
- Store.csv (16.7 KB)
- Dax Reference Cheat Sheet.pbix (162.1 KB) Exercises Data
- Channel.csv (0.1 KB)
- Geography.csv (22.2 KB)
- Product.csv (290.5 KB)
- ProductCategory.csv (0.2 KB)
- ProductSubcategory.csv (1.0 KB)
- Promotion.csv (2.3 KB)
- Sales.csv (2.0 MB)
- Stores.csv (15.8 KB)
- Exercise_Soluciton_Contoso PowerBi.pbix (957.9 KB)
- 1. Regresion_sklearn.pbix (66.8 KB)
- 2. Regresion.pbix (456.7 KB)
- 3. Clasification_basic.pbix (77.1 KB)
- 3.1. Clasification_advance.pbix (91.3 KB)
- 4. Clustering.pbix (471.8 KB) Exercises Exercises_Solution
- 1. Regresion.pbix (456.1 KB)
- 2. Clasification.pbix (109.8 KB)
- 3. Clustering.pbix (137.5 KB)
- Cooks Distance.png (9.8 KB)
- Exercise_Solution_Regresion.ipynb (68.1 KB)
- Learning Curve.png (32.3 KB)
- Residuals.png (28.9 KB)
- regresion_best_model_ejercicio.pkl (194.4 KB)
- xgboost_cancer.pkl (133.9 KB)
- cancer_pred.csv (0.3 KB) dataset
- blood.csv (11.0 KB)
- cancer_pred.csv (0.3 KB)
- clustering.csv (25.2 KB)
- clustering2.csv (128.3 KB)
- salary.xlsx (10.0 KB)
- Clustering.ipynb (4.2 MB)
- Feature Importance.png (15.8 KB)
- Final RF Model 11Nov2020.pkl (700.7 KB)
- Prediction Error.png (24.8 KB)
- Pycaret Fundamentals.ipynb (436.8 KB)
- Regresion_ML model creation.ipynb (58.0 KB)
- Residuals.png (24.2 KB)
- clustering.csv (25.2 KB)
- 1. Fundamentals of regression models with Pycaret in Power BI.mp4 (30.4 MB)
- 2. Applied project_Development of a regression model of XGBoost.mp4 (48.6 MB)
- 3. Applied project_Integration of the XGBoost model in Power BI.mp4 (26.8 MB)
- 4. Applied project_Adding model evaluation charts to PowerBI.mp4 (28.3 MB)
- 5. Exercise 1. Regression models in Power BI.mp4 (7.1 MB)
- 6. Solution Exercise 1.mp4 (56.0 MB)
- 1. Fundamentals of classification models with Pycaret in Power BI.mp4 (15.8 MB)
- 2. Evaluation metrics of classification models.mp4 (16.5 MB)
- 3. Applied project_Development of a classification model in Power BI.mp4 (37.3 MB)
- 4. Applied project_Model load and prediction in Power BI.mp4 (14.9 MB)
- 5. Applied project_Applying advanced pre-processing to the data.mp4 (35.8 MB)
- 6. Applied project_Evaluation of the classification model in Power BI.mp4 (43.5 MB)
- 7. Exercise 2. Classification models in Power BI.mp4 (5.6 MB)
- 8. Solution_Exercise 2.mp4 (40.7 MB)
- 1. Fundamentals of Clustering Models with Pycaret in Power BI.mp4 (10.8 MB)
- 2. Clustering model evaluation metrics.mp4 (4.7 MB)
- 3. Applied project_Development of a clustering model in Power BI.mp4 (61.0 MB)
- 4. Applied project_Development of the model in Jupyter and integration in Power BI.mp4 (66.0 MB)
- 5. Exercise 3. Clustering models in Power BI.mp4 (5.0 MB)
- 6. Solution Exercise 3.mp4 (26.3 MB)
- 1. Introducción a Power Bi.mp4 (15.2 MB)
- 2. Descarga y presentación de Power BI Desktop.mp4 (30.2 MB)
- 3. Importación de datos.mp4 (34.9 MB)
- 4. Herramientas para analizar la calidad del dato.mp4 (31.5 MB)
- 5. Funciones de pre-procesamiento de datos.mp4 (49.0 MB)
- 1. Visual Q&A.mp4 (27.4 MB)
- 10. Predictions with time series.mp4 (34.6 MB)
- 11. Solution Exercise 4.mp4 (18.5 MB)
- 12. Detection of anomalies in time series.mp4 (36.0 MB)
- 13. Solution Exercise 5.mp4 (26.3 MB)
- 2. Configuring the Q&A visual.mp4 (27.4 MB)
- 3. Solution Exercise 1.mp4 (31.0 MB)
- 4. Key Influencers.mp4 (42.2 MB)
- 5. Major Chart Segments Key Influencers.mp4 (19.2 MB)
- 6. Correlation vs Causation.mp4 (11.8 MB)
- 7. Solution Exercise 2.mp4 (19.5 MB)
- 8. Exercise 3 Hierarchical scheme.mp4 (45.2 MB)
- 9. Solution Exercise 3.mp4 (22.6 MB)
- 1. Install Python and synchronization with Power BI.mp4 (33.2 MB)
- 2. Installing Pycaret.mp4 (15.6 MB)
- 3. Jupyter Notebook Fundamentals.mp4 (23.0 MB)
- 1. How to run python scripts.mp4 (23.0 MB)
- 2. Seaborn Basics.mp4 (20.4 MB)
- 3. Selecting the correct chart type.mp4 (18.0 MB)
- 4. Applied project_Data preprocessing with Python.mp4 (73.6 MB)
- 5. Applied project_Analysis of numerical variables with Seaborn.mp4 (33.8 MB)
- 1. Introduction to AI.mp4 (15.1 MB)
- 2. Types of Machine Learning Models.mp4 (18.2 MB)
- 3. Phases of training Machine Learning models.mp4 (8.1 MB)
- 4. Main Machine Learning algorithms.mp4 (7.7 MB)
- 1. Deploy models in Power BI.mp4 (18.3 MB)
- 1. Entrenando un modelo de regresión con Sklearn en Power BI.mp4 (32.4 MB)
- 2. Evaluation and obtaining of metrics of the Sklearn regression model.mp4 (35.7 MB)
- 1. Introduction to autoML.mp4 (9.5 MB)
- 2. Training and optimization of models with Pycaret.mp4 (57.2 MB)
- 3. Model evaluation and deployment with Pycaret.mp4 (33.2 MB)
- Bonus Resources.txt (0.4 KB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce