PacktPub | Understanding Regression Techniques [Video] [FCO]
- Category Other
- Type Tutorials
- Language English
- Total size 3.1 GB
- Uploaded By SunRiseZone
- Downloads 665
- Last checked 6 days ago
- Date uploaded 5 years ago
- Seeders 12
- Leechers 9
Infohash : CB43C016839B9D70BC771FDFDA702F2FA61D88CE
Lynda and other Courses >>> https://www.freecoursesonline.me/
For Developer Tools & Apps >>> https://ftuapps.com/
Forum for discussion >>> https://1hack.us/

By : Najib Mozahem
Released : March 24, 2020
Course Source : https://www.packtpub.com/data/understanding-regression-techniques-video
Explore the fundamentals of linear regression, logistic regression, and count model regression in an intuitive and non-mathematical way
Video Details
ISBN 9781800200197
Course Length 7 hours 10 minutes
Learn
⢠Understand the concept of regression
⢠Build logistic regression models
⢠Interpret regression results
⢠Build linear regression models
⢠Build count models
⢠Visualize the results
About
Linear and logistic regressions are among the first set of algorithms youâll study to get started on your journey in data science.
This course explores three basic regressionsâlinear, logistic, and count model. Starting with linear regressions, youâll first understand the difference between simple and multiple linear regressions and explore different types of variables, including binary, categorical, and quadratic. Once youâve got to grips with the fundamentals, youâll apply what youâve learned to solve a case study. As you advance, youâll explore logistic regression models and cover variables, non-linearity tests, prediction, and model fit. Finally, youâll get well-versed with count model regression.
By the end of the course, youâll be equipped with the knowledge you need to investigate correlations between multiple variables using regression models.
All the codes and supporting files for this course will be available at- https://github.com/PacktPublishing/Understanding-Regression-Techniques
Features:
⢠Understand the normality and independence of residuals
⢠Explore both graphical and non-graphical tests for non-linearity in logistic regression models
⢠Get to grips with count tables, their risk, and incidence rate ratio
Author
Najib Mozahem
Najib Mozahem works as a researcher and as an assistant professor at the university level, where he teaches Quantitative Analysis. He holds a Bachelorâs degree in Computer and Communication Engineering, completed his MBA with distinction, and completed his Ph.D. in Organizational Theory where he won the best thesis prize for Ph.D. He has also received the teaching excellence award for the year 2016 â 2017. His research interests include quantitative modeling and the study of human behavior in organizations.

Files:
[FreeCoursesOnline.Me] PacktPub - Understanding Regression Techniques [Video] 0. Websites you may like- 0. (1Hack.Us) Premium Tutorials-Guides-Articles & Community based Forum.url (0.4 KB)
- 1. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url (0.3 KB)
- 2. (NulledPremium.com) Download E-Learning, E-Books, Audio-Books, & more.etc.url (0.2 KB)
- 3. (FTUApps.com) Download Cracked Developers Applications For Free.url (0.2 KB)
- How you can help our Group!.txt (0.2 KB)
- 01.Introduction.mp4 (33.8 MB)
- 02.Simple linear regression.mp4 (49.7 MB)
- 03.The slope.mp4 (61.8 MB)
- 04.R-squared.mp4 (51.1 MB)
- 05.The p-value.mp4 (49.3 MB)
- 06.Model fit.mp4 (15.1 MB)
- 07.The residuals.mp4 (56.8 MB)
- 65.Count tables.mp4 (28.6 MB)
- 66.Risk.mp4 (16.9 MB)
- 67.Inceidence-rate ratio.mp4 (20.8 MB)
- 68.Two-by-three tables.mp4 (36.1 MB)
- 69.Single independent variable.mp4 (159.4 MB)
- 70.Examples.mp4 (34.5 MB)
- 71.Binary variables.mp4 (86.0 MB)
- 72.Multiple independent variables.mp4 (67.8 MB)
- 73.Categorical variables.mp4 (79.4 MB)
- 74.Exposure.mp4 (74.9 MB)
- 75.Negative binomial regression.mp4 (53.7 MB)
- 76.Truncated models.mp4 (30.4 MB)
- 77.Zero-inflated models.mp4 (85.3 MB)
- 78.Comparison of models.mp4 (28.1 MB)
- 79.Predicting the number of events.mp4 (12.4 MB)
- 80.Predicting probabilities of certain counts.mp4 (9.6 MB)
- 81.The dataset.mp4 (4.0 MB)
- 82.Continuous variables.mp4 (21.6 MB)
- 83.Binary variables.mp4 (3.1 MB)
- 84.Multivariate analysis.mp4 (3.5 MB)
- 85.Negative binomial regression.mp4 (5.4 MB)
- 86.Zero-inflated models.mp4 (22.9 MB)
- 87.Comparing count models.mp4 (10.6 MB)
- 88.Visualizing the result.mp4 (34.6 MB)
- 89.Conclusion.mp4 (17.8 MB)
- 08.Multiple linear regression.mp4 (43.1 MB)
- 09.The slopes.mp4 (43.5 MB)
- 10.R-squared.mp4 (12.5 MB)
- 11.The p-value.mp4 (10.9 MB)
- 12.Model fit and residuals.mp4 (39.7 MB)
- 13.Binary variables.mp4 (111.8 MB)
- 14.Categorical variables.mp4 (185.1 MB)
- 15.Quadratic variables.mp4 (85.2 MB)
- 16.Prediction.mp4 (22.9 MB)
- 17.Normality of residuals.mp4 (10.3 MB)
- 18.Independence of residuals.mp4 (10.1 MB)
- 19.Constant variance.mp4 (9.9 MB)
- 20.Multicollinearity.mp4 (12.5 MB)
- 21.Outliers.mp4 (14.9 MB)
- 22.Influential observations.mp4 (34.9 MB)
- 23.Selection algorithms.mp4 (49.6 MB)
- 24.The dataset.mp4 (10.0 MB)
- 25.Including continuous variables.mp4 (31.8 MB)
- 26.Including binary variables.mp4 (6.0 MB)
- 27.Including categorical variables.mp4 (5.8 MB)
- 28.Multiple regression.mp4 (13.1 MB)
- 29.Checking model fit.mp4 (9.1 MB)
- 30.Checking model assumptions.mp4 (19.3 MB)
- 31.Multicollinearity.mp4 (5.2 MB)
- 32.Outliers.mp4 (9.3 MB)
- 33.Influential observations.mp4 (15.9 MB)
- 34.Visualizing the result.mp4 (9.0 MB)
- 35.Two-by-two tables.mp4 (30.3 MB)
- 36.The odds.mp4 (27.4 MB)
- 37.The odds ratio.mp4 (31.5 MB)
- 38.Two-by-three tables.mp4 (73.5 MB)
- 39.Single independent variable.mp4 (152.0 MB)
- 40.Examples.mp4 (39.9 MB)
- 41.Binary variables.mp4 (71.7 MB)
- 42.Multiple independent variables.mp4 (66.1 MB)
- 43.Categorical variables.mp4 (92.2 MB)
- 44.Nonlinearity - Non-graphical test.mp4 (36.8 MB)
- 45.Nonlinearity - Graphical test.mp4 (63.7 MB)
- 46.Prediction.mp4 (19.2 MB)
- 47.Goodness of fit - Likelihood ratio test.mp4 (14.1 MB)
- 48.Goodness of fit - Hosmer-Lemeshow test.mp4 (23.1 MB)
- 49.Goodness of fit - Classification tables.mp4 (54.6 MB)
- 50.Goodness of fit - ROC analysis.mp4 (8.8 MB)
- 51.Residuals.mp4 (9.7 MB)
- 52.Influential Observations.mp4 (27.2 MB)
- 53.The dataset.mp4 (11.4 MB)
- 54.Continuous variables.mp4 (8.7 MB)
- 55.Test of linearity - Non-graphical.mp4 (5.2 MB)
- 56.Test of linearity - Graphical.mp4 (16.8 MB)
- 57.Binary variables.mp4 (6.3 MB)
- 58.Categorical variables.mp4 (26.0 MB)
- 59.Multivariate analysis.mp4 (7.2 MB)
- 60.Goodness of fit.mp4 (17.9 MB)
- 61.Residual analysis.mp4 (8.2 MB)
- 62.Influential observations.mp4 (6.8 MB)
- 63.Combining both residuals and influence in one graph.mp4 (13.7 MB)
- 64.Visualizing the result.mp4 (7.3 MB)
- code_9781800200197.zip (91.5 MB)
There are currently no comments. Feel free to leave one :)
Code:
- udp://open.demonii.si:1337/announce
- udp://p4p.arenabg.com:1337/announce
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.cyberia.is:6969/announce
- udp://9.rarbg.to:2710/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://denis.stalker.upeer.me:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://tracker.tiny-vps.com:6969/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://tracker.coppersurfer.tk:6969/announce
- udp://tracker.leechers-paradise.org:6969/announce
- udp://open.stealth.si:80/announce
- udp://tracker.pirateparty.gr:6969/announce
- udp://tracker.iamhansen.xyz:2000/announce
- udp://tracker.uw0.xyz:6969/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://opentor.org:2710/announce
- udp://tracker.moeking.me:6969/announce
- udp://tracker.zerobytes.xyz:1337/announce
- https://tracker.opentracker.se:443/announce
- https://tracker.nanoha.org:443/announce
- udp://tracker.openbittorrent.com:80/announce
- udp://tracker.nyaa.uk:6969/announce
- udp://9.rarbg.com:2790/announce
- http://tracker.ygsub.com:6969/announce
- udp://9.rarbg.me:2730/announce
- udp://9.rarbg.to:2790/announce
- udp://open.nyap2p.com:6969/announce
- udp://tracker-udp.gbitt.info:80/announce
- http://t.nyaatracker.com:80/announce
- http://tracker.files.fm:6969/announce
- udp://tracker-udp.gbitt.info:80/announce
- udp://9.rarbg.me:2710/announce