Udemy - Complete Guide to TensorFlow for Deep Learning with Pytho...

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 2.3 GB
  • Uploaded By CourseClub
  • Downloads 307
  • Last checked 1 week ago
  • Date uploaded 6 years ago
  • Seeders 5
  • Leechers 2

Infohash : 56E25E6929719E1C25FEF1E0712055D6B507C7BE



Complete Guide to TensorFlow for Deep Learning with Python

Learn how to use Google’s Deep Learning Framework – TensorFlow with Python! Solve problems with cutting edge techniques!

For More Courses Visit: https://desirecourse.net

Files:

[DesireCourse.Net] Udemy - Complete Guide to TensorFlow for Deep Learning with Python 1. Introduction
  • 1. Introduction.mp4 (12.0 MB)
  • 1. Introduction.srt (4.4 KB)
  • 2. Course Overview -- PLEASE DON'T SKIP THIS LECTURE! Thanks ).mp4 (16.4 MB)
  • 2. Course Overview -- PLEASE DON'T SKIP THIS LECTURE! Thanks ).srt (16.5 KB)
  • 2.1 FULL_TENSORFLOW_NOTES__AND_DATA.zip.zip (299.7 MB)
  • 3. FAQ - Frequently Asked Questions.html (0.4 KB)
  • 3.1 FULL_TENSORFLOW_NOTES__AND_DATA.zip.zip (299.7 MB)
10. AutoEncoders
  • 1. Autoencoder Basics.mp4 (13.9 MB)
  • 1. Autoencoder Basics.srt (12.9 KB)
  • 1.1 05-Autoencoders.zip.zip (7.9 MB)
  • 1.2 Autoencoder Slides.html (0.2 KB)
  • 2. Dimensionality Reduction with Linear Autoencoder.mp4 (37.6 MB)
  • 2. Dimensionality Reduction with Linear Autoencoder.srt (25.1 KB)
  • 3. Linear Autoencoder PCA Exercise Overview.mp4 (6.2 MB)
  • 3. Linear Autoencoder PCA Exercise Overview.srt (2.8 KB)
  • 4. Linear Autoencoder PCA Exercise Solutions.mp4 (22.9 MB)
  • 4. Linear Autoencoder PCA Exercise Solutions.srt (11.3 KB)
  • 5. Stacked Autoencoder.mp4 (43.9 MB)
  • 5. Stacked Autoencoder.srt (28.2 KB)
11. Reinforcement Learning with OpenAI Gym
  • 1. Introduction to Reinforcement Learning with OpenAI Gym.mp4 (8.0 MB)
  • 1. Introduction to Reinforcement Learning with OpenAI Gym.srt (6.5 KB)
  • 1.1 06-Reinforcement-Learning-OpenAI.zip.zip (10.6 KB)
  • 1.2 Reinforcement Learning Slides.html (0.2 KB)
  • 10. Policy Gradient Code Along Part One.mp4 (26.0 MB)
  • 10. Policy Gradient Code Along Part One.srt (16.5 KB)
  • 11. Policy Gradient Code Along Part Two.mp4 (32.9 MB)
  • 11. Policy Gradient Code Along Part Two.srt (16.8 KB)
  • 2. Extra Resources for Reinforcement Learning.html (1.2 KB)
  • 3. Introduction to OpenAI Gym.mp4 (13.9 MB)
  • 3. Introduction to OpenAI Gym.srt (9.0 KB)
  • 4. OpenAI Gym Steup.mp4 (14.8 MB)
  • 4. OpenAI Gym Steup.srt (11.8 KB)
  • 5. Open AI Gym Env Basics.mp4 (10.0 MB)
  • 5. Open AI Gym Env Basics.srt (9.3 KB)
  • 6. Open AI Gym Observations.mp4 (15.4 MB)
  • 6. Open AI Gym Observations.srt (13.4 KB)
  • 7. OpenAI Gym Actions.mp4 (14.8 MB)
  • 7. OpenAI Gym Actions.srt (12.7 KB)
  • 8. Simple Neural Network Game.mp4 (35.8 MB)
  • 8. Simple Neural Network Game.srt (23.6 KB)
  • 9. Policy Gradient Theory.mp4 (13.7 MB)
  • 9. Policy Gradient Theory.srt (11.9 KB)
12. GAN - Generative Adversarial Networks
  • 1. Introduction to GANs.mp4 (13.5 MB)
  • 1. Introduction to GANs.srt (11.0 KB)
  • 2. GAN Code Along - Part One.mp4 (19.5 MB)
  • 2. GAN Code Along - Part One.srt (13.2 KB)
  • 3. GAN Code Along - Part Two.mp4 (29.3 MB)
  • 3. GAN Code Along - Part Two.srt (16.1 KB)
  • 4. GAN Code Along - Part Three.mp4 (27.6 MB)
  • 4. GAN Code Along - Part Three.srt (16.2 KB)
13. BONUS
  • 1. Bonus Lecture.html (0.5 KB)
2. Installation and Setup
  • 1. Quick Note for MacOS and Linux Users.html (2.0 KB)
  • 2. Installing TensorFlow and Environment Setup.mp4 (27.8 MB)
  • 2. Installing TensorFlow and Environment Setup.srt (19.6 KB)
3. What is Machine Learning
  • 1. Machine Learning Overview.mp4 (30.4 MB)
  • 1. Machine Learning Overview.srt (26.6 KB)
  • 1.1 ML Overview Slides.html (0.2 KB)
4. Crash Course Overview
  • 1. Crash Course Section Introduction.mp4 (2.2 MB)
  • 1. Crash Course Section Introduction.srt (1.9 KB)
  • 2. NumPy Crash Course.mp4 (32.5 MB)
  • 2. NumPy Crash Course.srt (23.3 KB)
  • 3. Pandas Crash Course.mp4 (9.0 MB)
  • 3. Pandas Crash Course.srt (6.7 KB)
  • 4. Data Visualization Crash Course.mp4 (19.5 MB)
  • 4. Data Visualization Crash Course.srt (11.4 KB)
  • 5. SciKit Learn Preprocessing Overview.mp4 (20.3 MB)
  • 5. SciKit Learn Preprocessing Overview.srt (13.7 KB)
  • 6. Crash Course Review Exercise.mp4 (7.7 MB)
  • 6. Crash Course Review Exercise.srt (3.6 KB)
  • 7. Crash Course Review Exercise - Solutions.mp4 (17.4 MB)
  • 7. Crash Course Review Exercise - Solutions.srt (9.1 KB)
5. Introduction to Neural Networks
  • 1. Introduction to Neural Networks.mp4 (1.6 MB)
  • 1. Introduction to Neural Networks.srt (1.5 KB)
  • 1.1 Introduction to NN Slides.html (0.2 KB)
  • 10. Manual Creation of Neural Network - Part Four - Session.mp4 (25.2 MB)
  • 10. Manual Creation of Neural Network - Part Four - Session.srt (13.4 KB)
  • 11. Manual Neural Network Classification Task.mp4 (40.5 MB)
  • 11. Manual Neural Network Classification Task.srt (24.1 KB)
  • 2. Introduction to Perceptron.mp4 (6.8 MB)
  • 2. Introduction to Perceptron.srt (7.8 KB)
  • 3. Neural Network Activation Functions.mp4 (8.6 MB)
  • 3. Neural Network Activation Functions.srt (9.5 KB)
  • 4. Cost Functions.mp4 (5.0 MB)
  • 4. Cost Functions.srt (5.2 KB)
  • 5. Gradient Descent Backpropagation.mp4 (4.6 MB)
  • 5. Gradient Descent Backpropagation.srt (5.3 KB)
  • 6. TensorFlow Playground.mp4 (27.2 MB)
  • 6. TensorFlow Playground.srt (15.3 KB)
  • 7. Manual Creation of Neural Network - Part One.mp4 (12.5 MB)
  • 7. Manual Creation of Neural Network - Part One.srt (8.7 KB)
  • 8. Manual Creation of Neural Network - Part Two - Operations.mp4 (11.4 MB)
  • 8. Manual Creation of Neural Network - Part Two - Operations.srt (11.5 KB)
  • 9. Manual Creation of Neural Network - Part Three - Placeholders and Variables.mp4 (13.3 MB)
  • 9. Manual Creation of Neural Network - Part Three - Placeholders and Variables.srt (12.6 KB)
6. TensorFlow Basics
  • 1. Introduction to TensorFlow.mp4 (2.0 MB)
  • 1. Introduction to TensorFlow.srt (2.2 KB)
  • 1.1 TF Basics Slides.html (0.2 KB)
  • 10. TensorFlow Classification Example - Part Two.mp4 (31.9 MB)
  • 10. TensorFlow Classification Example - Part Two.srt (16.9 KB)
  • 11. TF Regression Exercise.mp4 (8.0 MB)
  • 11. TF Regression Exercise.srt (5.3 KB)
  • 12. TF Regression Exercise Solution Walkthrough.mp4 (27.8 MB)
  • 12. TF Regression Exercise Solution Walkthrough.srt (17.2 KB)
  • 13. TF Classification Exercise.mp4 (9.0 MB)
  • 13. TF Classification Exercise.srt (7.6 KB)
  • 14. TF Classification Exercise Solution Walkthrough.mp4 (21.7 MB)
  • 14. TF Classification Exercise Solution Walkthrough.srt (16.8 KB)
  • 15. Saving and Restoring Models.mp4 (15.4 MB)
  • 15. Saving and Restoring Models.srt (10.1 KB)
  • 15.1 Link to notebook.html (0.1 KB)
  • 2. TensorFlow Basic Syntax.mp4 (19.0 MB)
  • 2. TensorFlow Basic Syntax.srt (19.8 KB)
  • 3. TensorFlow Graphs.mp4 (8.5 MB)
  • 3. TensorFlow Graphs.srt (8.6 KB)
  • 4. Variables and Placeholders.mp4 (12.8 MB)
  • 4. Variables and Placeholders.srt (9.0 KB)
  • 5. TensorFlow - A Neural Network - Part One.mp4 (11.6 MB)
  • 5. TensorFlow - A Neural Network - Part One.srt (11.0 KB)
  • 6. TensorFlow - A Neural Network - Part Two.mp4 (32.5 MB)
  • 6. TensorFlow - A Neural Network - Part Two.srt (28.8 KB)
  • 7. TensorFlow Regression Example - Part One.mp4 (30.1 MB)
  • 7. TensorFlow Regression Example - Part One.srt (28.8 KB)
  • 8. TensorFlow Regression Example _ Part Two.mp4 (57.8 MB)
  • 8. TensorFlow Regression Example _ Part Two.srt (32.8 KB)
  • 9. TensorFlow Classification Example - Part One.mp4 (23.8 MB)
  • 9. TensorFlow Classification Example - Part One.srt (19.7 KB)
7. Convolutional Neural Networks
  • 1. Introduction to Convolutional Neural Network Section.mp4 (1.2 MB)
  • 1. Introduction to Convolutional Neural Network Section.srt (1.3 KB)
  • 1.1 CNN Slides.html (0.2 KB)
  • 10. CNN MNIST Code Along - Part One.mp4 (26.2 MB)
  • 10. CNN MNIST Code Along - Part One.srt (23.5 KB)
  • 11. CNN MNIST Code Along - Part Two.mp4 (9.6 MB)
  • 11. CNN MNIST Code Along - Part Two.srt (7.6 KB)
  • 12. Introduction to CNN Project.mp4 (16.1 MB)
  • 12. Introduction to CNN Project.srt (10.0 KB)
  • 13. CNN Project Exercise Solution - Part One.mp4 (50.2 MB)
  • 13. CNN Project Exercise Solution - Part One.srt (22.3 KB)
  • 14. CNN Project Exercise Solution - Part Two.mp4 (27.0 MB)
  • 14. CNN Project Exercise Solution - Part Two.srt (16.5 KB)
  • 2. Review of Neural Networks.mp4 (3.4 MB)
  • 2. Review of Neural Networks.srt (3.9 KB)
  • 3. New Theory Topics.mp4 (19.7 MB)
  • 3. New Theory Topics.srt (22.4 KB)
  • 4. Quick note on MNIST lecture.html (0.1 KB)
  • 5. MNIST Data Overview.mp4 (6.6 MB)
  • 5. MNIST Data Overview.srt (6.6 MB)
  • 6. MNIST Basic Approach Part One.mp4 (12.1 MB)
  • 6. MNIST Basic Approach Part One.srt (12.8 KB)
  • 7. MNIST Basic Approach Part Two.mp4 (34.9 MB)
  • 7. MNIST Basic Approach Part Two.srt (23.8 KB)
  • 8. CNN Theory Part One.mp4 (26.6 MB)
  • 8. CNN Theory Part One.srt (27.3 KB)
  • 9. CNN Theory Part Two.mp4 (6.5 MB)
  • 9. CNN Theory Part Two.srt (6.5 KB)
8. Recurrent Neural Networks
  • 1. Introduction to RNN Section.mp4 (1.6 MB)
  • 1. Introduction to RNN Section.srt (1.7 KB)
  • 1.1 RNN Slides.html (0.2 KB)
  • 10. RNN with TensorFlow - Part Three.mp4 (12.7 MB)
  • 10. RNN with TensorFlow - Part Three.srt (10.6 KB)
  • 11. Time Series Exercise Overview.mp4 (13.6 MB)
  • 11. Time Series Exercise Overview.srt (11.7 KB)
  • 12. Time Series Exercise Solution.mp4 (35.1 MB)
  • 12. Time Series Exercise Solution.srt (24.5 KB)
  • 13. Quick Note on Word2Vec.mp4 (6.1 MB)
  • 13. Quick Note on Word2Vec.srt (4.8 KB)
  • 14. Word2Vec Theory.mp4 (16.6 MB)
  • 14. Word2Vec Theory.srt (18.2 KB)
  • 15. Word2Vec Code Along - Part One.mp4 (35.5 MB)
  • 15. Word2Vec Code Along - Part One.srt (24.9 KB)
  • 16. Word2Vec Part Two.mp4 (33.4 MB)
  • 16. Word2Vec Part Two.srt (16.2 MB)
  • 2. RNN Theory.mp4 (10.3 MB)
  • 2. RNN Theory.srt (12.0 KB)
  • 3. Manual Creation of RNN.mp4 (16.6 MB)
  • 3. Manual Creation of RNN.srt (16.0 KB)
  • 4. Vanishing Gradients.mp4 (6.1 MB)
  • 4. Vanishing Gradients.srt (6.7 KB)
  • 5. LSTM and GRU Theory.mp4 (12.9 MB)
  • 5. LSTM and GRU Theory.srt (14.5 KB)
  • 6. Introduction to RNN with TensorFlow API.mp4 (6.3 MB)
  • 6. Introduction to RNN with TensorFlow API.srt (7.0 KB)
  • 7. RNN with TensorFlow - Part One.mp4 (34.1 MB)
  • 7. RNN with TensorFlow - Part One.srt (27.5 KB)
  • 8. RNN with TensorFlow - Part Two.mp4 (30.3 MB)
  • 8. RNN with TensorFlow - Part Two.srt (26.0 KB)
  • 9. Quick Note on RNN Plotting Part 3.html (1.0 KB)
9. Miscellaneous Topics
  • 1. Intro to Miscellaneous Topics.html (0.3 KB)
  • 1.1 Miscellaneous-Topics.zip.zip (74.1 KB)
  • 2. Deep Nets with Tensorflow Abstractions API - Part One.mp4 (16.3 MB)
  • 2. Deep Nets with Tensorflow Abstractions API - Part One.srt (10.8 KB)
  • 3. Deep Nets with Tensorflow Abstractions API - Estimator API.mp4 (18.7 MB)
  • 3. Deep Nets with Tensorflow Abstractions API - Estimator API.srt (10.8 KB)
  • 4. Deep Nets with Tensorflow Abstractions API - Keras.mp4 (33.4 MB)
  • 4. Deep Nets with Tensorflow Abstractions API - Keras.srt (18.2 KB)
  • 5. Deep Nets with Tensorflow Abstractions API - Layers.mp4 (28.7 MB)
  • 5. Deep Nets with Tensorflow Abstractions API - Layers.srt (15.3 KB)
  • 6. Tensorboard.mp4 (40.0 MB)
  • 6. Tensorboard.srt (25.7 KB)
  • [CourseClub.Me].url (0.0 KB)
  • [DesireCourse.Net].url (0.0 KB)
  • [FreeCourseWorld.Com].url (0.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://p4p.arenabg.com:1337/announce
  • udp://explodie.org:6969/announce
  • udp://zephir.monocul.us:6969/announce
  • udp://tracker.ds.is:6969/announce
  • udp://open.demonii.si:1337/announce
  • udp://exodus.desync.com:6969/announce
  • udp://denis.stalker.upeer.me:6969/announce
  • udp://tracker.nyaa.uk:6969/announce
  • udp://retracker.akado-ural.ru:80/announce
  • http://tracker.files.fm:6969/announce
  • udp://tracker-udp.gbitt.info:80/announce
  • https://tracker.opentracker.se:443/announce
  • udp://tracker.zum.bi:6969/announce
  • http://tracker.nyap2p.com:8080/announce
REVERSE-PROXY πŸ”„ RP (success) | 1829ms πŸ“„ torrent πŸ• 17 Jan 2026, 04:37:19 am IST ⏰ 11 Feb 2026, 04:37:19 am IST βœ… Valid for 24d 23h πŸ”„ Wait 10m