Udemy - Tensorflow and Keras For Neural Networks and Deep Learnin...
- Category Other
- Type Tutorials
- Language English
- Total size 5.6 GB
- Uploaded By CourseClub
- Downloads 461
- Last checked 1 week ago
- Date uploaded 6 years ago
- Seeders 7
- Leechers 3
Infohash : 563666B3C54B511537BA28B4722BD573F760952B
Tensorflow and Keras For Neural Networks and Deep Learning
Master the Most Important Deep Learning Frameworks (Tensorflow & Keras) for Python Data Science
For More Courses Visit: https://desirecourse.net
For More Courses Visit: https://courseclub.me
Files:
[DesireCourse.Net] Udemy - Tensorflow and Keras For Neural Networks and Deep Learning 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools- 1. Introduction to the Course.mp4 (9.9 MB)
- 1. Introduction to the Course.vtt (3.1 KB)
- 10. Written Keras Installation Instructions.html (1.7 KB)
- 2. Data and Scripts For the Course.html (0.2 KB)
- 2.1 Data.zip.zip (532.4 MB)
- 3. Python Data Science Environment.mp4 (94.2 MB)
- 3. Python Data Science Environment.vtt (10.9 KB)
- 4. For Mac Users.mp4 (50.2 MB)
- 4. For Mac Users.vtt (4.1 KB)
- 5. Introduction to IPython.mp4 (101.0 MB)
- 5. Introduction to IPython.vtt (18.3 KB)
- 6. Install Tensorflow.mp4 (167.8 MB)
- 6. Install Tensorflow.vtt (14.9 KB)
- 7. Written Tensorflow Installation Instructions.html (0.2 KB)
- 8. Install Keras on Windows 10.mp4 (82.9 MB)
- 8. Install Keras on Windows 10.vtt (4.5 KB)
- 9. Install Keras on Mac.mp4 (77.1 MB)
- 9. Install Keras on Mac.vtt (3.3 KB)
- 1. Introduction to CNN.mp4 (183.5 MB)
- 1. Introduction to CNN.vtt (12.8 KB)
- 10. CNN With Keras.mp4 (37.8 MB)
- 10. CNN With Keras.vtt (4.0 KB)
- 10.1 cnn_keras.txt.txt (1.9 KB)
- 11. CNN on Image Data with Keras-Part 1.mp4 (24.4 MB)
- 11. CNN on Image Data with Keras-Part 1.vtt (2.4 KB)
- 12. CNN on Image Data with Keras-Part 2.mp4 (40.7 MB)
- 12. CNN on Image Data with Keras-Part 2.vtt (4.9 KB)
- 12.1 planesnet.json.json (181.8 MB)
- 12.2 cnn_keras-planets.txt.txt (3.1 KB)
- 2. Implement a CNN for Multi-Class Supervised Classification.mp4 (79.5 MB)
- 2. Implement a CNN for Multi-Class Supervised Classification.vtt (6.7 KB)
- 3. Activation Functions.mp4 (91.3 MB)
- 3. Activation Functions.vtt (6.3 KB)
- 4. More on CNN.mp4 (48.1 MB)
- 4. More on CNN.vtt (4.1 KB)
- 5. Pre-Requisite For Working With Imagery Data.mp4 (20.1 MB)
- 5. Pre-Requisite For Working With Imagery Data.vtt (2.4 KB)
- 5.1 Lecture 64_cnn image.txt.txt (0.1 KB)
- 6. CNN on Image Data-Part 1.mp4 (108.9 MB)
- 6. CNN on Image Data-Part 1.vtt (9.5 KB)
- 6.1 Lecture 65_cnn_cat dog.txt.txt (3.0 KB)
- 7. CNN on Image Data-Part 2.mp4 (71.1 MB)
- 7. CNN on Image Data-Part 2.vtt (6.2 KB)
- 7.1 NIKEAD.zip.zip (10.2 MB)
- 7.2 tflearn_shoes.txt.txt (4.5 KB)
- 8. More on TFLearn.mp4 (74.4 MB)
- 8. More on TFLearn.vtt (7.9 KB)
- 8.1 Lecture 66_cnn_planet.txt.txt (2.7 KB)
- 9. CNN Workflow for Keras.mp4 (36.2 MB)
- 9. CNN Workflow for Keras.vtt (4.3 KB)
- 1. Autoencoders for With CNN- Tensorflow.mp4 (66.3 MB)
- 1. Autoencoders for With CNN- Tensorflow.vtt (6.3 KB)
- 2. Autoencoders for With CNN- Keras.mp4 (41.1 MB)
- 2. Autoencoders for With CNN- Keras.vtt (4.6 KB)
- 2.1 keras auto.txt.txt (2.1 KB)
- 1. Theory Behind RNNs.mp4 (57.2 MB)
- 1. Theory Behind RNNs.vtt (5.3 KB)
- 2. LSTM For Time Series Data.mp4 (52.3 MB)
- 2. LSTM For Time Series Data.vtt (6.2 KB)
- 2.1 international-airline-passengers.csv.csv (2.3 KB)
- 3. LSTM for Predicting Stock Prices.mp4 (72.3 MB)
- 3. LSTM for Predicting Stock Prices.vtt (7.6 KB)
- 3.1 all_stocks_5yr.csv.csv (28.2 MB)
- 3.2 lstm_stock.txt.txt (2.0 KB)
- 1. Use Colabs for Jupyter Data Science.mp4 (43.9 MB)
- 1. Use Colabs for Jupyter Data Science.vtt (6.5 KB)
- 1.1 colab.txt.txt (0.1 KB)
- 1. Python Packages for Data Science.mp4 (36.4 MB)
- 1. Python Packages for Data Science.vtt (4.0 KB)
- 2. Introduction to Numpy.mp4 (31.2 MB)
- 2. Introduction to Numpy.vtt (4.0 KB)
- 3. Create Numpy Arrays.mp4 (63.3 MB)
- 3. Create Numpy Arrays.vtt (6.1 KB)
- 3.1 numpy create.txt.txt (0.5 KB)
- 4. Numpy Operations.mp4 (111.8 MB)
- 4. Numpy Operations.vtt (15.6 KB)
- 4.1 numpy op.txt.txt (1.4 KB)
- 5. Numpy for Statistical Operation.mp4 (47.8 MB)
- 5. Numpy for Statistical Operation.vtt (6.9 KB)
- 5.1 numpy stats.txt.txt (0.5 KB)
- 6. Introduction to Pandas.mp4 (84.7 MB)
- 6. Introduction to Pandas.vtt (10.5 KB)
- 7. Read in Data from CSV.mp4 (53.7 MB)
- 7. Read in Data from CSV.vtt (6.0 KB)
- 7.1 bostonTxt.txt.txt (17.2 KB)
- 7.2 read csv_pd.txt.txt (0.5 KB)
- 7.3 winequality-red.csv.csv (82.2 KB)
- 7.4 Resp2.csv.csv (0.3 KB)
- 8. Read in Data from Excel.mp4 (42.3 MB)
- 8. Read in Data from Excel.vtt (3.8 KB)
- 8.1 boston1.xls.xls (73.5 KB)
- 8.2 read excel_pd.txt.txt (0.3 KB)
- 9. Basic Data Cleaning.mp4 (37.5 MB)
- 9. Basic Data Cleaning.vtt (4.1 KB)
- 1. A Brief Touchdown.mp4 (21.1 MB)
- 1. A Brief Touchdown.vtt (1.7 KB)
- 2. A Brief Touchdown Computational Graphs.mp4 (11.3 MB)
- 2. A Brief Touchdown Computational Graphs.vtt (2.1 KB)
- 3. Common Mathematical Operators in Tensorflow.html (0.5 KB)
- 4. A Tensorflow Session.mp4 (28.3 MB)
- 4. A Tensorflow Session.vtt (3.9 KB)
- 4.1 Lecture 17_tf session.txt.txt (0.5 KB)
- 5. Interactive Tensorflow Session.mp4 (11.3 MB)
- 5. Interactive Tensorflow Session.vtt (1.5 KB)
- 5.1 Lecture 18_interactive session.txt.txt (0.3 KB)
- 6. Constants and Variables in Tensorflow.mp4 (25.9 MB)
- 6. Constants and Variables in Tensorflow.vtt (3.9 KB)
- 6.1 Lecture 19_constant var.txt.txt (0.7 KB)
- 7. Placeholders in Tensorflow.mp4 (31.5 MB)
- 7. Placeholders in Tensorflow.vtt (3.7 KB)
- 7.1 Lecture 26_place.txt.txt (0.7 KB)
- 1. What is Keras.mp4 (23.9 MB)
- 1. What is Keras.vtt (3.6 KB)
- 1. Theory of Linear Regression (OLS).mp4 (112.7 MB)
- 1. Theory of Linear Regression (OLS).vtt (10.6 KB)
- 10. Accuracy Assessment For Binary Classification.mp4 (63.0 MB)
- 10. Accuracy Assessment For Binary Classification.vtt (4.9 KB)
- 11. Linear Classification with Binary Classification With Mixed Predictors.mp4 (88.8 MB)
- 11. Linear Classification with Binary Classification With Mixed Predictors.vtt (7.1 KB)
- 11.1 titanic.csv.csv (59.8 KB)
- 11.2 Lecture 38_Linear classifier_mixed pred.txt.txt (2.8 KB)
- 12. Softmax Classification With Tensorflow.mp4 (70.0 MB)
- 12. Softmax Classification With Tensorflow.vtt (6.2 KB)
- 2. OLS From First Principles.mp4 (75.0 MB)
- 2. OLS From First Principles.vtt (8.6 KB)
- 2.1 Lecture 29_ols reg.txt.txt (2.8 KB)
- 3. Visualize the Results of OLS.mp4 (26.5 MB)
- 3. Visualize the Results of OLS.vtt (3.1 KB)
- 3.1 Lecture 30_Viz.txt.txt (1.0 KB)
- 4. Multiple Regression With Tensorflow-Part 1.mp4 (46.4 MB)
- 4. Multiple Regression With Tensorflow-Part 1.vtt (3.9 KB)
- 4.1 Lecture 31_ML Reg.txt.txt (2.2 KB)
- 5. Estimate With Tensorflow Estimators.mp4 (11.5 MB)
- 5. Estimate With Tensorflow Estimators.vtt (2.8 KB)
- 6. Multiple Regression With Tensorflow Estimators.mp4 (58.8 MB)
- 6. Multiple Regression With Tensorflow Estimators.vtt (4.8 KB)
- 7. More on Linear Regressor Estimator.mp4 (98.6 MB)
- 7. More on Linear Regressor Estimator.vtt (7.3 KB)
- 7.1 Lecture 34_linear regressor_csv data.txt.txt (3.5 KB)
- 7.2 listings.csv.csv (14.1 MB)
- 8. GLM Generalized Linear Model.mp4 (46.0 MB)
- 8. GLM Generalized Linear Model.vtt (5.4 KB)
- 9. Linear Classifier For Binary Classification.mp4 (107.3 MB)
- 9. Linear Classifier For Binary Classification.vtt (6.2 KB)
- 9.1 creditcard.csv.csv (143.8 MB)
- 9.2 Lecture 36_linear classifier python.txt.txt (3.0 KB)
- 1. What is Machine Learning.mp4 (91.3 MB)
- 1. What is Machine Learning.vtt (6.7 KB)
- 2. Theory Behind ANN (Artificial Neural Network) and DNN (Deep Neural Networks).mp4 (107.0 MB)
- 2. Theory Behind ANN (Artificial Neural Network) and DNN (Deep Neural Networks).vtt (10.2 KB)
- 1. What is Unsupervised Learning.mp4 (30.6 MB)
- 1. What is Unsupervised Learning.vtt (1.9 KB)
- 2. Autoencoders for Unsupervised Classification.mp4 (21.2 MB)
- 2. Autoencoders for Unsupervised Classification.vtt (1.9 KB)
- 3. Autoencoders in Tensorflow (Binary Class Problem).mp4 (70.6 MB)
- 3. Autoencoders in Tensorflow (Binary Class Problem).vtt (6.4 KB)
- 3.1 creditcard.csv.csv (143.9 MB)
- 3.2 Lecture 44_autoencoder_binary.txt.txt (2.9 KB)
- 4. Autoencoders in Tensorflow (Multiple Classes).mp4 (56.5 MB)
- 4. Autoencoders in Tensorflow (Multiple Classes).vtt (5.3 KB)
- 5. Autoencoders in Keras (Simple).mp4 (53.2 MB)
- 5. Autoencoders in Keras (Simple).vtt (5.2 KB)
- 5.1 Lecture 47_keras_autoencoder.txt.txt (2.4 KB)
- 6. Autoencoders in Keras (Sparsity Constraints).mp4 (37.7 MB)
- 6. Autoencoders in Keras (Sparsity Constraints).vtt (4.0 KB)
- 6.1 Lecture 48_keras_auto-regu.txt.txt (2.2 KB)
- 7. Deep Autoencoder With Keras.mp4 (68.1 MB)
- 7. Deep Autoencoder With Keras.vtt (7.9 KB)
- 7.1 creditcard.csv.csv (143.9 MB)
- 7.2 Lecture 49_deep auto.txt.txt (3.2 KB)
- 1. Multi Layer Perceptron (MLP) with Tensorflow.mp4 (61.3 MB)
- 1. Multi Layer Perceptron (MLP) with Tensorflow.vtt (5.6 KB)
- 1.1 Lecture 49_mlp_mnist.txt.txt (2.7 KB)
- 2. Multi Layer Perceptron (MLP) With Keras.mp4 (32.2 MB)
- 2. Multi Layer Perceptron (MLP) With Keras.vtt (3.6 KB)
- 2.1 lect 50_keras-mlp1.txt.txt (1.5 KB)
- 3. Keras MLP For Binary Classification.mp4 (36.7 MB)
- 3. Keras MLP For Binary Classification.vtt (3.7 KB)
- 3.1 lect 50_keras mlp-binary.txt.txt (1.4 KB)
- 3.2 sonar.csv.csv (85.7 KB)
- 4. Keras MLP for Multiclass Classification.mp4 (50.6 MB)
- 4. Keras MLP for Multiclass Classification.vtt (4.9 KB)
- 4.1 lect 51_keras mlp-mc.txt.txt (1.4 KB)
- 4.2 iris1.csv.csv (4.4 KB)
- 5. Keras MLP for Regression.mp4 (30.4 MB)
- 5. Keras MLP for Regression.vtt (3.1 KB)
- 5.1 housing.csv.csv (47.9 KB)
- 5.2 lect 52_keras-regression.txt.txt (1.2 KB)
- 1. What is Artificial Intelligence.mp4 (99.5 MB)
- 1. What is Artificial Intelligence.vtt (9.1 KB)
- 2. Deep Neural Network (DNN) Classifier With Tensorflow.mp4 (62.7 MB)
- 2. Deep Neural Network (DNN) Classifier With Tensorflow.vtt (6.0 KB)
- 2.1 Iris.csv.csv (5.0 KB)
- 2.2 Lecture 54_dnnclass.txt.txt (1.2 KB)
- 3. Deep Neural Network (DNN) Classifier With Mixed Predictors.mp4 (83.8 MB)
- 3. Deep Neural Network (DNN) Classifier With Mixed Predictors.vtt (6.7 KB)
- 3.1 titanic.csv.csv (59.8 KB)
- 3.2 Lecture 55_dnnclass_titanic.txt.txt (3.3 KB)
- 4. Deep Neural Network (DNN) Regression With Tensorflow.mp4 (51.2 MB)
- 4. Deep Neural Network (DNN) Regression With Tensorflow.vtt (4.6 KB)
- 4.1 Lecture 56_dnnreg.txt.txt (1.1 KB)
- 5. Wide & Deep Learning (Tensorflow).mp4 (122.9 MB)
- 5. Wide & Deep Learning (Tensorflow).vtt (9.6 KB)
- 5.1 Lecture 57_dnn_wide-deep.txt.txt (6.9 KB)
- 6. DNN Classifier With Keras.mp4 (30.0 MB)
- 6. DNN Classifier With Keras.vtt (3.0 KB)
- 6.1 pima-indians-diabetes.csv.csv (22.7 KB)
- 6.2 lect 58_dnn-keras.txt.txt (0.9 KB)
- 7. DNN Classifier With Keras-Example 2.mp4 (42.4 MB)
- 7. DNN Classifier With Keras-Example 2.vtt (3.9 KB)
- 7.1 lect 59_dnn_keras-2.txt.txt (1.4 KB)
- 7.2 creditcard.csv.csv (143.8 MB)
- [CourseClub.Me].url (0.0 KB)
- [DesireCourse.Net].url (0.0 KB)
There are currently no comments. Feel free to leave one :)
Code:
- http://0d.kebhana.mx:443/announce
- udp://bigfoot1942.sektori.org:6969/announce
- https://tracker.fastdownload.xyz:443/announce
- https://opentracker.xyz:443/announce
- http://open.trackerlist.xyz:80/announce
- udp://tracker.birkenwald.de:6969/announce
- udp://tracker.vanitycore.co:6969/announce
- http://torrent.nwps.ws:80/announce
- udp://tracker.port443.xyz:6969/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://t.nyaatracker.com:80/announce
- udp://tracker.torrent.eu.org:451/announce
- udp://retracker.lanta-net.ru:2710/announce
- udp://retracker.hotplug.ru:2710/announce
- udp://bt.xxx-tracker.com:2710/announce
- udp://tracker.coppersurfer.tk:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.toss.li:6969/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://tracker.iamhansen.xyz:2000/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://tracker.justseed.it:1337/announce
- https://2.track.ga:443/announce
- udp://zephir.monocul.us:6969/announce
- udp://open.demonii.si:1337/announce