PentesterAcademy - Data Science and Machine Learning for Infosec ...

  • Category Other
  • Type Tutorials
  • Language English
  • Total size 20.5 GB
  • Uploaded By SunRiseZone
  • Downloads 1984
  • Last checked 1 day ago
  • Date uploaded 7 years ago
  • Seeders 10
  • Leechers 22

Infohash : F800B843304770030590ED3A727A922A01EE4132





Author : Sinan Ozdemir
Lectures : 50
Torrent Contains : 59 Files
Course Source : https://www.pentesteracademy.com/course?id=30


About Course :

The age of intelligent machines is here! We are now seeing Machine Learning disrupting every technological field including computer security. As more and more security products use Machine Learning, it is important as Pentesters and Security Researchers to understand how to make and break this technology!

About Author :

Sinan Ozdemir is a Data Scientist and Machine Learning expert from San Francisco with a Masters in Theoretical Mathematics from Johns Hopkins University where he served as a lecturer of Mathematics, Statistics and Computer Science for sometime. He is author of the book "Principles of Data Science" and the course "Data Science for Infosec Professionals" for Pentester Academy (2017 release). He is also currently the co-Founder/CTO of Legion Analytics, a machine learning startup. Sinan's passion for data and education has followed him all over the country where he has taught in several prison systems, conferences and universities.

For More Udemy Free Courses >>> http://www.freetutorials.eu
For more Lynda and other Courses >>> https://www.freecoursesonline.me/
Our Forum for discussion >>> https://discuss.freetutorials.eu/




Files:

[FreeCoursesOnline.Me] PentesterAcademy - Data Science and Machine Learning for Infosec - [FCO]
  • 10.1 - Module 10- Dimension Reduction Part 1.mp4 (353.8 MB)
  • 10.2 - Module 10- Dimension Reduction Part 2.mp4 (395.3 MB)
  • 10.3 - Module 10- Dimension Reduction Part 3.mp4 (687.9 MB)
  • 11.1 - Module 11- Clustering Part 1.mp4 (560.7 MB)
  • 11.2 - Module 11- Clustering Part 2.mp4 (366.9 MB)
  • 11.3 - Module 11- Clustering Part 3.mp4 (330.3 MB)
  • 1.1 - Module 1- Pandas Part 1.mp4 (491.4 MB)
  • 12.1 - Module 12- Stochastic Gradient Descent Part 1.mp4 (438.7 MB)
  • 12.2 - Module 12- Stochastic Gradient Descent Part 2 .mp4 (377.6 MB)
  • 12.3 - Module 12- Stochastic Gradient Descent Part 3.mp4 (655.0 MB)
  • 1.2 - Module 1- Pandas Part 2 .mp4 (543.9 MB)
  • 13.1 - Module 13- Neural Networks - Deep Learning Part 1.mp4 (336.3 MB)
  • 13.2 - Module 13- Neural Networks - Deep Learning Part 2.mp4 (314.4 MB)
  • 13.3 - Module 13- Neural Networks - Deep Learning Part 3.mp4 (719.3 MB)
  • 1.3 - Module 1- Pandas Part 3 .mp4 (865.5 MB)
  • 14.1 - Module 14- Recommendations Engine Part 1.mp4 (497.6 MB)
  • 14.2 - Module 14- Recommendations Engine Part 2.mp4 (386.0 MB)
  • 1.4 - Module 1 Pandas Part 4 .mp4 (599.7 MB)
  • 1 - Data Science and Machine Learning for Infosec- COURSE INTRODUCTION.MP4 (15.7 MB)
  • 1 - Lab Setup and Installation.mp4 (118.3 MB)
  • 2.1 - Module 2- K Nearest Neighbors (KNN) Part 1 .mp4 (407.2 MB)
  • 2.2 - Module 2- K Nearest Neighbors (KNN) Part 2.mp4 (398.0 MB)
  • 2.3 - Module 2- K Nearest Neighbors (KNN) Part 3.mp4 (519.0 MB)
  • 2.4 - Module 2- K Nearest Neighbors (KNN) Part 4.mp4 (308.0 MB)
  • 3.1 - Module 3- Model Evaluation and Linear Regression Part 1.mp4 (294.5 MB)
  • 3.2 - Module 3- Model Evaluation and Linear Regression Part 2.mp4 (424.5 MB)
  • 3.3 - Module 3- Model Evaluation and Linear Regression Part 3.mp4 (313.5 MB)
  • 3.4 - Module 3- Model Evaluation and Linear Regression Part 4.mp4 (422.8 MB)
  • 4.1 - Module 4- Logistic Regression Part 1 .mp4 (283.9 MB)
  • 4.2 - Module 4- Logistic Regression Part 2.mp4 (199.9 MB)
  • 4.3 - Module 4- Logistic Regression Part 3.mp4 (289.5 MB)
  • 4.4 - Module 4- Logistic Regression Part 4 .mp4 (344.1 MB)
  • 5.1 - Module 5- Natural Language Processing Part 1.mp4 (397.7 MB)
  • 5.2 - Module 5- Natural Language Processing Part 2.mp4 (305.3 MB)
  • 5.3 - Module 5- Natural Language Processing Part 3.mp4 (290.9 MB)
  • 5.4 - Module 5- Natural Language Processing Part 4.mp4 (381.0 MB)
  • 6.1 - Module 6- Naive Bayes Classification Part 1.mp4 (212.4 MB)
  • 6.2 - Module 6- Naive Bayes Classification Part 2.mp4 (293.4 MB)
  • 6.3 - Module 6- Naive Bayes Classification Part 3.mp4 (250.8 MB)
  • 6.4 - Module 6- Naive Bayes Classification Part 4.mp4 (306.4 MB)
  • 7.1 - Module 7- Advanced Scikit Learn Part 1.mp4 (416.5 MB)
  • 7.2 - Module 7- Advanced Scikit Learn Part 2 .mp4 (363.4 MB)
  • 8.1 - Module 8- Decision Trees Part 1 .mp4 (460.3 MB)
  • 8.2 - Module 8- Decision Trees Part 2 .mp4 (579.1 MB)
  • 8.3 - Module 8- Decision Trees Part 3 .mp4 (908.3 MB)
  • 9.1 - Module 9- Ensembling Techniques Part 1.mp4 (432.3 MB)
  • 9.2 - Module 9- Ensembling Techniques Part 2.mp4 (403.0 MB)
  • 9.3 - Module 9- Ensembling Techniques Part 3.mp4 (733.5 MB)
  • 9.4 - Module 9- Ensembling Techniques Part 4.mp4 (443.8 MB)
  • Case Study- Detecting Malicious URLs.mp4 (442.1 MB)
  • code.zip (8.0 MB)
  • data.zip (99.7 MB)
  • Discuss.FreeTutorials.Us.html (165.7 KB)
  • FreeCoursesOnline.Me.html (108.3 KB)
  • FreeTutorials.Eu.html (102.2 KB)
  • Presented By SaM.txt (0.0 KB)
  • [TGx]Downloaded from torrentgalaxy.org.txt (0.5 KB)
  • Torrent Downloaded From GloDls.to.txt (0.1 KB)
  • urls file.rar (5.1 KB)

There are currently no comments. Feel free to leave one :)

Code:

  • udp://public.popcorn-tracker.org:6969/announce
  • udp://tw.opentracker.ga:36920/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • https://seeders-paradise.org:443/announce
  • udp://open.stealth.si:80/announce
  • udp://hk1.opentracker.ga:6969/announce
  • udp://open.stealth.si:80/announce
  • https://opentracker.xyz:443/announce
  • https://t.quic.ws:443/announce
  • https://tracker.fastdownload.xyz:443/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://tracker.coppersurfer.tk:6969/announce
  • udp://zephir.monocul.us:6969/announce
  • udp://open.demonii.si:1337/announce
R2-CACHE ☁️ R2 (hit) | CDN: MISS (0s) 📄 torrent 🕐 03 Jan 2026, 01:13:11 am IST ⏰ 28 Jan 2026, 01:13:10 am IST ✅ Valid for 3d 16h 🔄 Refresh Cache